精英家教網 > 初中數學 > 題目詳情

【題目】如圖,平面直角坐標系中,直線y=x+4分別交x軸、y軸于點A、C,直線BC與直線AC關于y軸對稱,動點D從點A出發(fā),沿AC以每秒2個單位長度的速度向終點C運動,當點D出發(fā)后,過點DDE∥BC交折線A﹣O﹣C于點E,以DE為邊作等邊△DEF,設△DEF△ACO重疊部分圖形的面積為S,點D運動的時間為t秒.

(1)寫出坐標:點A(  ),點B(   ),點C(   );

(2)當點E在線段AO上時,求St之間的函數關系式;

(3)求出以點B、E、F為頂點的三角形是直角三角形時t的值;

(4)直接寫出點F運動的路程長為   

【答案】(1)﹣4,0;4,0;0,4 ;(2)S=﹣;(3)t的值是 秒或 秒;(4)4+4.

【解析】

(1)令x=0,得即可求出點的坐標,令y=0,得即可求出點的坐標,根據直線BC與直線AC關于y軸對稱,即可求出點的坐標.

(2)當點FOC上時,求出的值,然后分兩種情況進行討論即可.

(3)分∠EFB=90°和∠FEB=90°兩種情況進行討論,分別畫出示意圖,進行計算即可.

(4)點E在線段OA上時,如圖,F的運動路徑為等邊ACBBC邊上的高線AF,

當點E在線段OC上時,設BC的中點為P,如圖點F的運動路徑為PC的長,相加即可.

(1)x=0時,

y=0時,

∵直線BC與直線AC關于y軸對稱,

B(4,0),

故答案為:﹣4,0;4,0;0,

(2)RtACO中,

∴∠CAO=60°,

AC=BC,

∴∠ABC=CAO=60°,

DEBC,

∴∠AED=ABC=60°,

∴△ADE是等邊三角形,

AD=AE=2t,

當點FOC上時,如圖1,

∵∠AED=DEF=60°,

∴∠OEF=30°,

∵∠EOF=90°,

EF=DE=AD=2t,

AO=AE+OE=2t+t=4,

①當時,點E在線段OA上,DEFACO重疊部分圖形是DEF,如圖2,

②當時,如圖3,DEFACO重疊部分圖形是四邊形DEGH,

AE=2t,OE=4﹣2t,

RtEOG中,∠EGO=30°,

RtFHG中,∠HGF=30°,

S=SDEF﹣SGHF,

(3)①如圖4,當0<t≤2時,∠EFB=90°,FBE=30°,

BE=2EF=2AD,

8﹣2t=4t,

②如圖5,當2<t<4時,Ey軸上,

FEB=90°,FBE=30°,

∵∠ABC=60°,

∴∠EBO=30°,

OB=4,

BF=AD,

綜上,t的值是秒或秒;

(4)動點D從點A出發(fā),DEBC,點E在線段OA上時,如圖6,點F的運動路徑為等邊ACBBC邊上的高線AF,

此時

當點E在線段OC上時,設BC的中點為P,如圖7,點F的運動路徑為PC的長,

∴點F運動的路程長為:

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線y=x+8x軸,y軸分別交于點ABMOB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為  

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校在推進新課改的過程中,開設的課程超市有:A.炫彩劇社,B.烹飪,C.游泳,D.羽毛球,E.科技等五個科目,學生可根據自己的愛好選修一門,負責課程超市的老師對七年級一班全體同學的選課情況進行調查統計,并將結果繪制成了如下兩幅尚不完整的統計圖:

根據圖中提供的信息,解答下列問題:

(1)請求出該班的總人數;

(2)扇形統計圖中,D所在扇形的圓心角度數為   ,并補全條形統計圖;

(3)該班班委4人中,1人選修炫彩劇社,2人選修烹飪,1人選修游泳,老師要從這4人中任選2人了解他們對課程超市課程安排的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修炫彩劇社,1人選修烹飪的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為表彰在某活動中表現積極的同學,老師決定購買文具盒與鋼筆作為獎品.已知5個文具盒、2支鋼筆共需100元;3個文具盒、1支鋼筆共需57元.

(1)每個文具盒、每支鋼筆各多少元?

(2)若本次表彰活動,老師決定購買10件作為獎品,若購買個文具盒,10件獎品共需元,求的函數關系式.如果至少需要購買3個文具盒,本次活動老師最多需要花多少錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在△ABC中,∠C=90°,AC=3cm,BC=4cm,點P是邊BC上由BC運動(不與點B、C重合)的一動點,P點的速度是1cm/s,設點P的運動時間為t,過P點作AC的平行線交AB與點N,連接AP,

(1)請用含有t的代數式表示線段AN和線段PN的長,

(2)當t為何值時,△APN的面積等于△ACP面積的三分之一?

(3)在點P的運動過程中,是否存在某一時刻的t的值,使得△APN的面積有最大值,若存在請求出t的值并計算最大面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】滿足下列條件的,不是直角三角形的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰△ABC中,AB=AC=10,BC=16,點F是邊BC上不與點B,C重合的一個動點,直線DE垂直平分BF,垂足為D.當△ACF是直角三角形時,線段BD的長為__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BCRtABC的斜邊,∠CBA30°,△ABD,△ACF,△BCE均為正三角形,四邊形MNPE是長方形,點FMN上,點DNP上,若AC2,則圖中空白部分的面積是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,王爺爺家院子里有一塊三角形田地ABC,AB=AC=5米,BC=6米,現打算把它開墾出一個矩形MNFE區(qū)域種植韭菜,AMN區(qū)域種植芹菜,CMEBNF區(qū)域種植青菜(開墾土地面積損耗均忽略不計),其中點M,N分別在AC,AB上,點E,FBC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,設CM=5x米,王爺爺的蔬菜總收益為W元.

(1)當矩形MNFE恰好為正方形時,求韭菜種植區(qū)域矩形MNFE的面積.

(2)若種植韭菜的收益等于另兩種蔬菜收益之和的2倍,求這時x的值.

(3)求王爺爺的蔬菜總收益為W關于x的函數表達式及W的最大值.

查看答案和解析>>

同步練習冊答案