如圖1,已知∠EOF,點B、C在射線OF上,四邊形ABCD是平行四邊形,AC、BD相交于點M,連接OM.
(1)當OM⊥AC時,求證:OA=OC.
(2)如圖2,當∠EOF=45°時,且四邊形ABCD是邊長為a的正方形時,求OM的長.(結果保留根號)
作业宝

(1)證明:∵四邊形ABCD是平行四邊形,
∴AM=CM,
∵OM⊥AC,
∴OM是AC的垂直平分線,
∴OA=OC;

(2)過M作MG⊥OF于G,
∵四邊形ABCD是邊長為a的正方形,
∴AD∥BC,∠DBC=45°,
∵∠EOF=45°,
∴∠AOB=∠EOF,
∴AO∥DB,
∴四邊形AOBD是平行四邊形,
∴AD=OB=a,
∵OG=a,
∵BC=a,
∴MG=a,
∴OM==a.
分析:(1)若要證明OA=OC,則可轉化為證明OM是AC的垂直平分線即可;
(2)過M作MG⊥OF于G,首先證明四邊形AOBD是平行四邊形,得到AD=OB,再利用等腰直角三角形的性質得到BG和MG的長,進而利用勾股定理即可求出OM的長.
點評:本題考查了垂直平分線的性質、正方形的性質、平行四邊形的判定和性質以及勾股定理的運用,題目的綜合性很強,難度中等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,已知正方形ABCD中,對角線AC、BD交于O點,過O點作OE⊥OF分別交DC于E,交BC于F,∠FEC的角平分線EP交直線AC于P.
(1)①求證:OE=OF;
②寫出線段EF、PC、BC之間的一個等量關系式,并證明你的結論;
(2)如圖2,當∠EOF繞O點逆時針旋轉一個角度,使E、F分別在CD、BC的延長線上,請完成圖形并判斷(1)中的結論①、②是否分別成立?若不成立,寫出相應的結論(所寫結論均不必證明).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•貴陽模擬)如圖1,已知∠EOF,點B、C在射線OF上,四邊形ABCD是平行四邊形,AC、BD相交于點M,連接OM.
(1)當OM⊥AC時,求證:OA=OC.
(2)如圖2,當∠EOF=45°時,且四邊形ABCD是邊長為a的正方形時,求OM的長.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連接AE、BF.求證:AE=BF;
(2)為響應市人民政府“形象勝于生命”的號召,在甲建筑物上從A點到E點掛一長為30m的宣傳條幅(如圖2),在乙建筑物的頂部D點測得頂端A點的仰角為45°,測得條幅底端E點的俯角為30°,求底部不能直接到達的兩建筑物之間的水平距離(答案可帶根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)如圖1,已知∠EOF=120°,OM平分∠EOF,A是OM上一點,∠BAC=60°,且與OF、OE分別相交于點B、C,則有AB=AC;
(2)如圖2,在如上的(1)中,當∠BAC繞點A逆時針旋轉使得點B落在OF的反向延長線上時,(1)中的結論是否還成立?若成立,給出證明;若不成立,說明理由;
(3)如圖3,已知∠AOC=∠BOC=∠BAC=60°,求證:①△ABC是等邊三角形; ②OC=OA+OB.

查看答案和解析>>

同步練習冊答案