(2006•鹽城)一司機(jī)駕駛汽車從甲地去乙地,以80千米/小時的平均速度用6小時到達(dá)目的地.
(1)當(dāng)他按原路勻速返回時,求汽車速度v(千米/小時)與時間t(小時)之間的函數(shù)關(guān)系式;
(2)如果該司機(jī)勻速返回時,用了4.8小時,求返回時的速度.
【答案】分析:根據(jù)速度×時間=路程,可以求出甲地去乙地的路程;再根據(jù)行駛速度=路程÷時間,得到v與t的函數(shù)解析式.
解答:解:(1)由已知得:vt=80×6,(2分)
,(0<t<6);(4分)
(2)當(dāng)t=4.8時,(千米/小時). (6分)
答:返回時的速度100千米/小時. (7分)
點(diǎn)評:清楚路程、速度、時間三者之間的關(guān)系對解答本題很重要.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2006•鹽城)已知:AB為⊙O的直徑,P為AB弧的中點(diǎn).
(1)若⊙O′與⊙O外切于點(diǎn)P(見圖甲),AP、BP的延長線分別交⊙O′于點(diǎn)C、D,連接CD,則△PCD是
等腰直角
等腰直角
三角形;
(2)若⊙O′與⊙O相交于點(diǎn)P、Q(見圖乙),連接AQ、BQ并延長分別交⊙O′于點(diǎn)E、F,請選擇下列兩個問題中的一個作答:
問題一:判斷△PEF的形狀,并證明你的結(jié)論;
問題二:判斷線段AE與BF的關(guān)系,并證明你的結(jié)論.
我選擇問題
,結(jié)論:
△PEF是等腰直角三角形
△PEF是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•鹽城)已知:如圖,A(0,1)是y軸上一定點(diǎn),B是x軸上一動點(diǎn),以AB為邊,在∠OAB的外部作∠BAE=∠OAB,過B作BC⊥AB,交AE于點(diǎn)C.
(1)當(dāng)B點(diǎn)的橫坐標(biāo)為時,求線段AC的長;
(2)當(dāng)點(diǎn)B在x軸上運(yùn)動時,設(shè)點(diǎn)C的縱、橫坐標(biāo)分別為y、x,試求y與x的函數(shù)關(guān)系式(當(dāng)點(diǎn)B運(yùn)動到O點(diǎn)時,點(diǎn)C也與O點(diǎn)重合);
(3)設(shè)過點(diǎn)P(0,-1)的直線l與(2)中所求函數(shù)的圖象有兩個公共點(diǎn)M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(08)(解析版) 題型:解答題

(2006•鹽城)已知:如圖,A(0,1)是y軸上一定點(diǎn),B是x軸上一動點(diǎn),以AB為邊,在∠OAB的外部作∠BAE=∠OAB,過B作BC⊥AB,交AE于點(diǎn)C.
(1)當(dāng)B點(diǎn)的橫坐標(biāo)為時,求線段AC的長;
(2)當(dāng)點(diǎn)B在x軸上運(yùn)動時,設(shè)點(diǎn)C的縱、橫坐標(biāo)分別為y、x,試求y與x的函數(shù)關(guān)系式(當(dāng)點(diǎn)B運(yùn)動到O點(diǎn)時,點(diǎn)C也與O點(diǎn)重合);
(3)設(shè)過點(diǎn)P(0,-1)的直線l與(2)中所求函數(shù)的圖象有兩個公共點(diǎn)M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2006•鹽城)一司機(jī)駕駛汽車從甲地去乙地,以80千米/小時的平均速度用6小時到達(dá)目的地.
(1)當(dāng)他按原路勻速返回時,求汽車速度v(千米/小時)與時間t(小時)之間的函數(shù)關(guān)系式;
(2)如果該司機(jī)勻速返回時,用了4.8小時,求返回時的速度.

查看答案和解析>>

同步練習(xí)冊答案