【題目】如圖,已知Rt△AOB的直角邊OA在x軸上,OA=2,AB=1,將Rt△AOB繞點O逆時針旋轉(zhuǎn)90°得到Rt△COD,反比例函數(shù)y=經(jīng)過點B.
(1)求反比例函數(shù)解析式;
(2)連接BD,若點P 是反比例函數(shù)圖象上的一點,且OP將△OBD的周長分成相等的兩部分,求點P的坐標.
【答案】(1)y=;(2)P1(,),P2(-,-).
【解析】分析: (1)由OA=2,AB=1可得B(2,1),代入解析式即可得出答案;
(2)由直線OP把△BOD的周長分成相等的兩部分且OB=OD,知DQ=BQ,即點Q為BD的中點,從而得出點Q坐標,求得直線BD解析式,聯(lián)立反比例函數(shù)解析式和直線BD解析式可得點P坐標.
詳解:
(1)∵OA=2,AB=1,∴B(2,1).
代B(2,1)于y=中,得k=2,∴y=;
(2)設(shè)OP與BD交于點Q,
∵OP將△OBD的周長分成相等的兩部分,又OB=OD,OQ=OQ,
∴BQ=DQ,即Q為BD的中點,∴Q(,).
設(shè)直線OP的解析式為y=kx,把Q(,)代入y=kx,得=k,
∴k=3.∴直線BD的解析式為y=3x
由得
∴P1(,),P2(-,-).
點睛: 本題主要考查待定系數(shù)求函數(shù)解析式及反比例函數(shù)圖象上點的坐標特征,熟練掌握待定系數(shù)法求函數(shù)解析式及根據(jù)周長相等得出點Q的坐標是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(,且為常數(shù)).
()求證:拋物線與軸有兩個公共點.
()若拋物線與軸的一個交點為,另一個交點為,與軸交點為,直接寫出直線與拋物線對稱軸的交點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,的三個頂點的坐標分別為,,,解答下列問題:
(1)將向上平移1個單位長度,再向右平移5個單位長度后得到的,畫出;
(2)繞原點逆時針方向旋轉(zhuǎn)得到,畫出;
(3)如果利用旋轉(zhuǎn)可以得到,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:O是直線AB上的一點,是直角,OE平分.
(1)如圖1.若.求的度數(shù);
(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究和的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自實施新教育改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分同學(xué)進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類:A.特別好;B.好;C.一般;D.較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了多少名同學(xué)?
(2)求出調(diào)查中C類女生及D類男生的人數(shù),將條形統(tǒng)計圖補充完整;
(3)為了共同進步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,某商場計劃購進甲、乙兩種節(jié)能訂共1200只,這兩種節(jié)能燈的進價、售價如下表:
(1)如何進貨,進貨款恰好為46000元?
(2)為確保乙型節(jié)能燈順利暢銷,在(1)的條件下,商家決定對乙型節(jié)能燈進行打折出售,且全部售完后,乙型節(jié)能燈的利潤率為20%,請同乙型節(jié)能燈需打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:O是直線AB上一點,∠AOC=50°,OD是∠BOC的角平分線,OE⊥OC于點O.求∠DOE的度數(shù).(請補全下面的解題過程)
解:∵O是直線AB上一點,∠AOC=50°,
∴∠BOC=180°-∠AOC= °.
∵ OD是∠BOC的角平分線,
∴∠COD= ∠BOC .( )
∴∠COD=65°.
∵OE⊥OC于點O,(已知).
∴∠COE= °.( )
∴∠DOE=∠COE-∠COD= ° .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運輸360噸化肥,裝載了6輛大卡車和3輛小汽車;運輸440噸化肥,裝載了8輛大卡車和2輛小汽車
(1) 每輛大卡車與每輛小汽車平均各裝多少噸化肥?
(2) 現(xiàn)在用大卡車和小汽車一共10輛去裝化肥,要求運輸總量不低于300噸,則最少需要幾輛大卡車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個等式:2×=22﹣2×﹣2,4×=42﹣2×﹣2,給出定義如下:我們稱使等式ab=a2﹣2b﹣2成立的一對有理數(shù)a,b為“方差有理數(shù)對”,記為(a,b),如:(2,),(4,)都是“方差有理數(shù)對”.
(1)判斷數(shù)對(﹣1,﹣1)是否為“方差有理數(shù)對”,并說明理由;
(2)若(m,2)是“方差有理數(shù)對”,求﹣6m﹣3[m2﹣2(2m﹣1)]的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com