【題目】已知二次函數(shù)(a≠0)的圖象如圖,分析下列四個結(jié)論:①;②;③;④.其中正確的結(jié)論有( )
A. 個 B. 個 C. 個 D. 個
【答案】C
【解析】
①由拋物線的開口方向拋物線與y軸交點的位置、對稱軸即可確定a、b、c的符號,即得abc的符號;②由拋物線與x軸有兩個交點判斷即可;③x=-1時,y>0,即a-b+c>0,所以a+c>b④由
,a0,得到b>2a,所以b-2a>0.
解:①由開口向下,可得a<0,又由拋物線與y軸交于正半軸可得c>0,然后由對稱軸在y軸左側(cè),得到b與a同號,則可得b<0,abc>0,故①錯誤;
②由拋物線與x軸有兩個交點可得b2-4ac>0,故②正確;
③∵x=-1時,y>0,即a-b+c>0,
∴a+c>b,故③正確
④∵拋物線對稱軸x=,a0,
∴b-2a>0,故④正確
綜上所述正確的結(jié)論有3個
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】自貢是“鹽之都,龍之鄉(xiāng),燈之城”,文化底蘊深厚.為弘揚鄉(xiāng)土特色文化,某校就同學們對“自貢歷史文化”的了解程度進行隨機抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖:
⑴本次共調(diào)查 名學生,條形統(tǒng)計圖中= ;
⑵若該校共有學生1200名,則該校約有 名學生不了解“自貢歷史文化”;
⑶調(diào)查結(jié)果中,該校九年級(2)班學生中了解程度為“很了解”的同學進行測試,發(fā)現(xiàn)其中共有四名同學相當優(yōu)秀,它們是三名男生,一名女生,現(xiàn)準備從這四名同學中隨機抽取兩人去市里參加“自貢歷史文化”知識競賽,用樹狀圖或列表法,求恰好抽取一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①②③④,M,N分別是⊙O的內(nèi)接正三角形ABC,正方形ABCD,正五邊形ABCDE,…,正n邊形ABCDEFG…的邊AB,BC上的點,且BM=CN,連接OM,ON.
(1)求圖①中∠MON的度數(shù);
(2)圖②中,∠MON的度數(shù)是________,圖③中∠MON的度數(shù)是________;
(3)試探究∠MON的度數(shù)與正n邊形的邊數(shù)n的關(guān)系(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點為邊上一點,且AD=3cm,動點從點出發(fā)沿線段向終點運動.作,與邊相交于點.
找出圖中的一對相似三角形,并說明理由;
當為等腰三角形時,求的長;
求動點從點出發(fā)沿線段向終點運動的過程中點的運動路線長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓內(nèi)接四邊形ABCD的BA,CD的延長線交于P,AC,BD交于E,則圖中相似三角形有( )
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,CD與BE、AE分別交于點P,M.對于下列結(jié)論:①△BAE∽△CAD;②MPMD=MAME;③2CB2=CPCM.其中正確的是( )
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com