【題目】如圖,正方形ABCD的邊長為8,E、F、G、H分別是AB、BC、CD、DA上的動點,且AE=BF=CG=DH.

(1)判斷四邊形EFGH的形狀.(直接寫結(jié)論,不必證明)

(2)設(shè)BE=x,四邊形EFGH的面積為S,請真接寫出Sx的數(shù)解析式,并求出S的最小值.

【答案】(1)證明見解析;(2)S=2(x﹣4)2+32;最小值為32.

【解析】

(1)由正方形的性質(zhì)得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,證出AH=BE=CF=DG,由SAS證明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,證出四邊形EFGH是菱形,再證出∠HEF=90°,即可得出結(jié)論;
(2)根據(jù)四邊形EFGH面積為S,BE=x,則BF=8-x,由勾股定理得出S=x2+(8-x)2=2(x-4)2+32,Sx的二次函數(shù),容易得出四邊形EFGH面積的最小值.

解:(1)∵四邊形ABCD是正方形,

∴∠A=B=C=D=90°,AB=BC=CD=DA,

AE=BF=CG=DH,

AH=BE=CF=DG,

在△AEH、BFE、CGF和△DHG中,

∴△AEH≌△BFE≌△CGF≌△DHG(SAS),

EH=FE=GF=GH,AEH=BFE,

∴四邊形EFGH是菱形,

∵∠BEF+BFE=90°,

∴∠BEF+AEH=90°,

∴∠HEF=90°,

∴四邊形EFGH是正方形;

(2)設(shè)BE=x,四邊形EFGH的面積為S,則BF=8﹣x,

根據(jù)勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2,

S=x2+(8﹣x)2=2(x﹣4)2+32,

2>0,

S有最小值,

當(dāng)x=4時,S的最小值=32,

∴四邊形EFGH面積的最小值為32.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過點A(3,0)和點B(4,3).

(1)求這條拋物線所對應(yīng)的二次函數(shù)的表達式.

(2)直接寫出該拋物線開口方向和頂點坐標(biāo).

(3)直接在所給坐標(biāo)平面內(nèi)畫出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時,學(xué)生的注意力逐步增強,中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實驗分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):

(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學(xué)生的注意力更集中?

(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)調(diào)研得出某種商品每天的利潤y(元)與銷售單價x(元)之間滿足關(guān)系:y=ax2+bx﹣75,其圖象如圖所示.

(1)ab的值;

(2)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤是多少元?(參考公式:當(dāng)x=時,二次函數(shù)y=ax2+bx+c(a≠0)有最小(大)值)

(3)銷售單價定在多少時,該種商品每天的銷售利潤為21元?結(jié)合圖象,直接寫出銷售單價定在什么范圍時,該種商品每天的銷售利潤不低于21元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過點A(﹣4,0)C(0,﹣4),與x軸另一個交點為B.

(1)求此二次函數(shù)的解析式和頂點D的坐標(biāo);

(2)求出A、B兩點之間的距離;

(3)直接寫出當(dāng)y>﹣4時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某游樂園有一個滑梯高度AB,高度AC3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)

(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=x2+bx+c的圖象與一次函數(shù)y=x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標(biāo)為(1,0)

(1)求二次函數(shù)的解析式;

(2)求四邊形BDEC的面積S;

(3)在x軸上有一動點P,從O點出發(fā)以每秒1個單位的速度沿x軸向右運動,是否存在點P使得PBC是以P為直角頂點的直角三角形?若存在,求出點P運動的時間t的值,若不存在,請說明理由.

(4)若動點Px軸上,動點Q在射線AC上,同時從A點出發(fā),點P沿x軸正方向以每秒2個單位的速度運動,點Q以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與ABD相似,若存在,求a的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,a、b、c是三條公路,且ab,加油站M到三條公路的距離相等.(1)確定加油站M的位置.(保留作圖痕跡,不寫作法)

(2)一輛汽車沿公路cA駛向B,行使到AB中點時,司機發(fā)現(xiàn)油料不足,僅剩15升汽油,需要到加油站加油,已知從AB中點有路可直通加油站,若AB相距200千米,汽車每行使100千米耗油12升,請判斷這輛汽車能否順利到達加油站?為什么?

查看答案和解析>>

同步練習(xí)冊答案