【題目】某日上午點(diǎn)鐘,市氣象局測得在城市正東方向點(diǎn)有一臺風(fēng)中心正在以千米/時(shí)的速度沿西偏北方向迅速移動(如圖所示).據(jù)資料表明,在距離臺風(fēng)中心范圍內(nèi)為嚴(yán)重影響區(qū)域(假定臺風(fēng)中心移動方向不變,影響力不變).(參考數(shù)據(jù):,).

(1)市會不會受這次臺風(fēng)的嚴(yán)重影響,為什么;

(2)如果市會受嚴(yán)重影響,那么這次臺風(fēng)對市嚴(yán)重影響多長時(shí)間?

(3)市規(guī)定臺風(fēng)嚴(yán)重影響前一小時(shí)向市民發(fā)出預(yù)警警報(bào).如果市會受這次臺風(fēng)嚴(yán)重影響,那么市應(yīng)在幾點(diǎn)鐘發(fā)出預(yù)警警報(bào)?

【答案】(1)會受到臺風(fēng)影響;(2)1小時(shí)712秒;(3)A市應(yīng)該在9點(diǎn)發(fā)布警報(bào).

【解析】

(1)A市受影響與否取決于ABC的距離;

(2)A市受影響的時(shí)間實(shí)際上是A點(diǎn)在臺風(fēng)影響的圓的范圍內(nèi)的時(shí)間,也就是求這段時(shí)間內(nèi)臺風(fēng)中心移動的距離.通過構(gòu)建直角三角形來解出這段距離;

(3)解答此題就是要求出,臺風(fēng)第一次影響A市時(shí),臺風(fēng)從BE用了多長時(shí)間,也就是求BE的長(如圖2).

:,

中,,,

,

,

因此市會受到臺風(fēng)的影響.

如圖所示,臺風(fēng)中心從時(shí),市受影響,

,

已知風(fēng)速為千米/小時(shí),那么影響的時(shí)間是小時(shí)秒.

中,

,

,

,因此市應(yīng)該在點(diǎn)發(fā)布警報(bào).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)要印制期末考試卷,甲印刷廠提出:每套試卷收0.6元印刷費(fèi),另收400元制版費(fèi);乙印刷廠提出:每套試卷收1元印刷費(fèi),不再收取制版費(fèi).

(1)分別寫出兩個(gè)廠的收費(fèi)y()與印刷數(shù)量x()之間的函數(shù)關(guān)系式;

(2)請?jiān)谏厦娴闹苯亲鴺?biāo)系中分別作出(1)中兩個(gè)函數(shù)的圖象;

(3)若學(xué)校有學(xué)生2000,為保證每個(gè)學(xué)生均有試卷,則學(xué)校至少要付出印刷費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P.

(1)若AE=CF;

①求證:AF=BE,并求APB的度數(shù);

②若AE=2,試求APAF的值;

(2)若AF=BE,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C時(shí),試求點(diǎn)P經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量被池塘隔開的兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖所示的圖形,其中,,,上.有四位同學(xué)分別測量出以下四組數(shù)據(jù):①,; ,;,;,.根據(jù)所測數(shù)據(jù),能出間距離的有________(填上所有能求出、間距離的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形是由兩個(gè)小正方形和兩個(gè)小長方形組成的,根據(jù)圖形解答下列問題:

1)請用兩種不同的方法表示正方形的面積,并寫成一個(gè)等式;

2)運(yùn)用(1)中的等式,解決以下問題:

①已知,,求的值;

②已知,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5.

1)這個(gè)云梯的底端B離墻多遠(yuǎn)?

2)如圖(2),如果梯子的頂端下滑了8mAC的長),那么梯子的底部在水平方向右滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,切點(diǎn)為B,OC相交于點(diǎn)D,且CD=2,BC=4,

(1)求⊙O的半徑;

(2)連接AD并延長,交BC于點(diǎn)E,取BE的中點(diǎn)F,連接DF,試判斷DF與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABCAC=BC,ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點(diǎn)D,過D點(diǎn)作⊙O的切線交AC于點(diǎn)E,連接B、D并延長交AC于點(diǎn)F.則下列結(jié)論錯(cuò)誤的是( 。

A. ADE∽△ACO B. AOC∽△BFC

C. DEF∽△DOC D. CD2=DFDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,AB=4,ECD邊中點(diǎn),FAD邊中點(diǎn),AEBDG,交BFH,連接DH.

(1)求證:BG=2DG;

(2)求AH:HG:GE的值;

(3)求的值.

查看答案和解析>>

同步練習(xí)冊答案