【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC,求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
【答案】(1)y=﹣x2﹣2x+3(2)(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4)(3)
【解析】
試題分析:(1)把點A、C的坐標分別代入函數(shù)解析式,列出關于系數(shù)的方程組,通過解方程組求得系數(shù)的值;
(2)設P點坐標為(x,﹣x2﹣2x+3),根據(jù)S△AOP=4S△BOC列出關于x的方程,解方程求出x的值,進而得到點P的坐標;
(3)先運用待定系數(shù)法求出直線AC的解析式為y=x+3,再設Q點坐標為(x,x+3),則D點坐標為(x,x2+2x﹣3),然后用含x的代數(shù)式表示QD,根據(jù)二次函數(shù)的性質即可求出線段QD長度的最大值.
試題解析:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得
,
解得.
故該拋物線的解析式為:y=﹣x2﹣2x+3.
(2)由(1)知,該拋物線的解析式為y=﹣x2﹣2x+3,則易得B(1,0).
∵S△AOP=4S△BOC,
∴×3×|﹣x2﹣2x+3|=4××1×3.
整理,得(x+1)2=0或x2+2x﹣7=0,
解得x=﹣1或x=﹣1±2.
則符合條件的點P的坐標為:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);
(3)設直線AC的解析式為y=kx+t,將A(﹣3,0),C(0,3)代入,
得,
解得.
即直線AC的解析式為y=x+3.
設Q點坐標為(x,x+3),(﹣3≤x≤0),則D點坐標為(x,﹣x2﹣2x+3),
QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,
∴當x=﹣時,QD有最大值.
科目:初中數(shù)學 來源: 題型:
【題目】畫出數(shù)軸并標出表示下列各數(shù)的點,并用“<”把下列各數(shù)連接起來.
﹣3 ,4,2.5,1,﹣1 ,﹣5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】表記錄了甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數(shù)x與方差s2,根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應該選擇( )
甲 | 乙 | 丙 | 丁 | |
平均數(shù)x/cm | 561 | 560 | 561 | 560 |
方差s2 | 3.5 | 3.5 | 15.5 | 16.5 |
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD平分∠BAC;②作圖依據(jù)是S.A.S;③∠ADC=60°; ④點D在AB的垂直平分線上
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在某校“我的中國夢”演講比賽中,有9名學生參加比賽,他們決賽的最終成績各不相同,其中的一名學生要想知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的( )
A. 眾數(shù) B. 方差 C. 平均數(shù) D. 中位數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC與△CDA關于點O對稱,過O任作直線EF分別交AD、BC于點E、F,下面的結論:
①點E和點F,點B和點D是關于中心O對稱點;
②直線BD必經(jīng)過點O;
③四邊形DEOC與四邊形BFOA的面積必相等;
④△AOE與△COF成中心對稱.
其中正確的個數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com