【題目】如圖,在殘破的圓形工件上量得一條弦BC16,的中點(diǎn)DBC的距離ED4,則這個圓形工件的半徑是_____

【答案】10

【解析】

DEBC,DE平分弧BC,根據(jù)垂徑定理的推論得到圓心在直線DE上,設(shè)圓心為O,連結(jié)OB,設(shè)圓的半徑為R,根據(jù)垂徑定理得BECEBC8,然后根據(jù)勾股定理得到R282+R42,再解方程即可.

DEBCDE平分弧BC,

∴圓心在直線DE上,

設(shè)圓心為O,如圖,連結(jié)OB,設(shè)圓的半徑為R,則OER4,

OEBC,

BECEBC×168,

RtOEB中,OB2BE2+OE2,即R282+R42,解得R10,

即這個圓形工件的半徑是10

故答案為:10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進(jìn)價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn):若每箱以50元的價格出售,平均每天銷售80箱,價格每提高1元,平均每天少銷售2箱.

⑴.求平均每天銷售量(箱)與銷售價(元/箱)之間的函數(shù)關(guān)系式;

⑵.求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式;

⑶.當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACBα,將ABC繞點(diǎn)C順時針方向旋轉(zhuǎn)到ABC的位置,使AABC,設(shè)旋轉(zhuǎn)角為β,則α,β滿足關(guān)系( 。

A.α+β90°B.α+2β180°C.2α+β180°D.α+β180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)EBC的延長線上,且CEBC,AEAB,AEDC相交于點(diǎn)O,連接DE.若∠AOD120°AC4,則CD的大小為( 。

A.8B.4C.8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC中,∠ACB90°,BC6,∠A30°,將ABC繞點(diǎn)C逆時針旋轉(zhuǎn)α,(α≤60°),得到DEC,設(shè)直線DE與直線AB相交于點(diǎn)P.

1)如圖1,連接PC,求證:PC平分∠EPA

2)如圖2,在ABC旋轉(zhuǎn)過程中,連接BE,當(dāng)BCE的面積為9時,求α的度數(shù).

3)如圖3,當(dāng)點(diǎn)P在邊AB上時,問:PE+PB是否為定值?如果是,請求出此定值;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知k是常數(shù),拋物線yx2(k2k6)x3k的對稱軸是y軸,并且與x軸有兩個交點(diǎn).

(1)k的值:

(2)若點(diǎn)P在拋物線yx2(k2k6)x3k上,且Py軸的距離是2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動點(diǎn).

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,四邊形ACPB的面積最大?求出此時P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正方形ABCD邊上一點(diǎn),以O為圓心,OB為半徑畫圓與AD交于點(diǎn)E,過點(diǎn)E作⊙O的切線交CDF,將△DEF沿EF對折,點(diǎn)D的對稱點(diǎn)D'恰好落在⊙O上.若AB6,則OB的長為_____

查看答案和解析>>

同步練習(xí)冊答案