【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
【答案】(1)反比例函數(shù)解析式為y=﹣,一次函數(shù)解析式為y=﹣2x﹣4;(2)4.
【解析】
試題分析:(1)將點A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點A的坐標(biāo)以及反比例函數(shù)解析式,再將點B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;
(2)設(shè)AB與x軸相交于點C,根據(jù)一次函數(shù)解析式求出點C的坐標(biāo),從而得到點OC的長度,再根據(jù)S△AOB=S△AOC+S△BOC列式計算即可得解.
試題解析:(1)將A(﹣3,m+8)代入反比例函數(shù)y=得,
=m+8,
解得m=﹣6,
m+8=﹣6+8=2,
所以,點A的坐標(biāo)為(﹣3,2),
反比例函數(shù)解析式為y=﹣,
將點B(n,﹣6)代入y=﹣得,﹣=﹣6,
解得n=1,
所以,點B的坐標(biāo)為(1,﹣6),
將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,
,
解得,
所以,一次函數(shù)解析式為y=﹣2x﹣4;
(2)設(shè)AB與x軸相交于點C,
令﹣2x﹣4=0解得x=﹣2,
所以,點C的坐標(biāo)為(﹣2,0),
所以,OC=2,
S△AOB=S△AOC+S△BOC,
=×2×3+×2×1,
=3+1,
=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C在一次函數(shù) 的圖像上,它們的橫坐標(biāo)依次為-1,1,2,分別過這些點作 軸與 軸的垂線,則圖中陰影部分的面積之和是( )
A.3
B.4.5
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次射擊比賽中,甲、乙兩名運(yùn)動員10次射擊的平均成績都是7環(huán),其中甲的成績的方差S甲2=1.21,乙的成績的方差S乙2=3.98,由此可知( ).
A. 甲比乙的成績穩(wěn)定 B. 乙比甲的成績穩(wěn)定
C. 甲、乙兩人的成績一樣穩(wěn)定 D. 無法確定誰的成績更穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將x2+4x﹣5=0進(jìn)行配方變形,下列正確的是( )
A.(x+2)2=9
B.(x﹣2)2=9
C.(x+2)2=1
D.(x﹣2)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決老百姓看病貴的問題,對某種原價為400元的藥品進(jìn)行連續(xù)兩次降價,降價后的價格為256元,設(shè)每次降價的百分率為x,則依題意列方程為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點,點A(﹣1,0),點B(0,).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點O順時針得△A′OB′,當(dāng)A′恰好落在AB邊上時,設(shè)△AB′O的面積為S1,△BA′O的面積為S2,S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com