精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC和△DEF中,AB=DE,∠B=DEF

1)請你只添加一個條件(不再加輔助線),使△ABC≌△EFD,你添加的條件是 ;

2)添加了條件后,證明△ABC≌△EFD

【答案】1)∠A=D (答案不唯一,也可以是∠ACB=DFE BE=CF ACDF等等);(2)見解析.

【解析】

1)由AB=DE,∠B=∠DEF,可知再加一組角相等,即可證明三角形全等;
2)利用全等三角形的判定方法,結合條件證明即可.

1)解:∵AB=DE∠B=∠DEF,
∴可添加∠A=∠D,利用ASA來證明三角形全等,
故答案為:∠A=∠D(答案不唯一);
2)證明: 在△ABC和△DEF中,

,

∴△ABC≌△DEFASA).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,ECD中點,連接AE并延長AEBC的延長線于點F

1)求證:CFAD.

2)若AD3,AB8,當BC為多少時,點B在線段AF的垂直平分線上,為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點P是對角線AC上的一點,PE⊥AB,PF⊥AD,垂足分別為EF,且PE=PF,平行四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AMMB=ANND=12,則tan∠MCN=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EFBCAB、ACEF.

(1)圖①中有幾個等腰三角形?猜想:EFBE、CF之間有怎樣的關系.

(2)如圖②,ABAC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EFBECF間的關系還存在嗎?

(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OEBCABE,交ACF.這時圖中還有等腰三角形嗎?EFBE、CF關系又如何?說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調查,已知抽取的樣本中,男生、女生的人數相同,利用所得數據繪制如下統(tǒng)計圖表:

身高情況分組表(單位:cm)

組別

身高

A

x<160

B

160≤x<165

C

165≤x<170

D

170≤x<175

E

x≥175

根據圖表提供的信息,回答下列問題:

(1)樣本中,男生的身高眾數在   組,中位數在   組;

(2)樣本中,女生身高在E組的人數有   人;

(3)已知該校共有男生600人,女生480人,請估計身高在165≤x<175之間的學生約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,∠C=90°,AC=8BC=6,角平分線ADBE相交于點O,則四邊形OECD的面積為(  )

A.5B.C.D.8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等腰直角三角形AOB中,已知AOOB,點P、D分別在ABOB上.

1)∠A=∠B   ;

2)如圖1中,若POPD,∠OPD45°,證明△BOP是等腰三角形;

3)如圖2中,若AB10,點PAB上移動,且滿足POPDDEAB于點E,試問:此時PE的長度是否變化?若變化,說明理由;若不變,求出PE的長.

查看答案和解析>>

同步練習冊答案