【題目】如圖,在梯形ABCD中,AD∥BC,E為CD中點,連接AE并延長AE交BC的延長線于點F.
(1)求證:CF=AD.
(2)若AD=3,AB=8,當BC為多少時,點B在線段AF的垂直平分線上,為什么?
【答案】(1)見解析;(2)當BC=5時,點B在線段AF的垂直平分線上,理由見解析.
【解析】
(1)根據(jù)平行線的性質(zhì)可得∠D=∠ECF,利用ASA可證明△FEC≌△AED,即可證明CF=AD;
(2)若點B在線段AF的垂直平分線上,則應(yīng)有AB=BF,根據(jù)AB=8,CF=AD=3,BC=BF﹣CF即可求出BC的長.
(1)∵AD∥BC,
∴∠D=∠DCF,
在△FEC與△AED中,,
∴△FEC≌△AED(ASA),
∴CF=AD.
(2)當BC=5時,點B在線段AF的垂直平分線上,
理由:∵點B在AF的垂直平分線上,
∴AB=BF,
∴AB=BC+CF,
∵AD=CF,
∴AB=BC+AD,
∵BC=5,AD=3,AB=8,
∴BC=AB-AD=5,
∴當BC=5時,點B在線段AF的垂直平分線上.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與思考:整式乘法與因式分解是方向相反的變形,由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式,例如:將式子x2﹣x﹣6分解因式.這個式子的常數(shù)項﹣6=2×(﹣3),一次項系數(shù)﹣1=2+(﹣3),這個過程可用十字相乘的形式形象地表示:先分解常數(shù)項,分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù).如圖所示.這種分解二次三項式的方法叫“十字相乘法”,請同學們認真觀察,分析理解后,解答下列問題.
(1)分解因式:x2+7x﹣18.
(2)填空:若x2+px﹣8可分解為兩個一次因式的積,則整數(shù)p的所有可能值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃容器高19cm,底面周長為60cm,在外側(cè)距下底1.5cm的點A處有一只蜘蛛,在蜘蛛正對面的圓柱形容器的外側(cè),距上底1.5cm處的點B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請你幫蜘蛛計算它沿容器側(cè)面爬行的最短距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系xOy中點A的坐標為(﹣1,1),點B的坐標為(3,3),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點E.
(1)求點E的坐標;
(2)求拋物線的函數(shù)解析式;
(3)點F為線段OB上的一個動點(不與點O、B重合),直線EF與拋物線交于M、N兩點(點N在y軸右側(cè)),連接ON、BN,當四邊形ABNO的面積最大時,求點N的坐標并求出四邊形ABNO面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對稱軸為直線x=1的拋物線y=﹣x2+bx+c與x軸交于點A和點B,與y軸交于點C,且點B的坐標為(﹣1,0)
(1)求拋物線的解析式并作出圖象;
(2)點D的坐標為(0,1),點P是拋物線上的動點,若△PCD是以CD為底的等腰三角形,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C、D的坐標分別是(1,7)、(1,1)、(4,1)、(6,1),且△CDE∽△ABC,則點E的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市今年中考理化實驗操作考試,采用學生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學實驗(用紙簽D、E、F表示)中各抽取一個進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.
(1) 用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;
(2) 小剛抽到物理實驗B和化學實驗F(記作事件P)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過點F作GF⊥AF交AD于點G,設(shè) =n.
(1)求證:AE=GE;
(2)當點F落在AC上時,用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△DEF中,AB=DE,∠B=∠DEF.
(1)請你只添加一個條件(不再加輔助線),使△ABC≌△EFD,你添加的條件是 ;
(2)添加了條件后,證明△ABC≌△EFD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com