【題目】魔術(shù)師把四張撲克牌放在桌子上,如圖所示,然后蒙住眼睛,請一位觀眾上臺把其中的一張?zhí)幣菩D(zhuǎn)180°放好,魔術(shù)師解開蒙著的眼睛的布后,看到四張牌如圖23-2-8所示,他很快確定了被旋轉(zhuǎn)的那一張牌,聰明的同學(xué)們,你知道哪一張牌被觀眾旋轉(zhuǎn)過嗎?說說你的理由.

【答案】第一張撲克牌即方塊4被觀眾旋轉(zhuǎn)過.理由見解析

【解析】

由于左邊這四張牌與右邊的牌完全相同.似乎沒有牌被動過,所以旋轉(zhuǎn)后的圖形與原圖形完全一樣;根據(jù)上述信息可得被動過的這張牌上的圖案一定是中心對稱圖形,據(jù)此找出四張牌中是中心對稱圖形的一張即可解決問題.

第一張撲克牌即方塊4被觀眾旋轉(zhuǎn)過.

理由是:這四張撲克牌中后三張上的圖案,都不是中心對稱圖形.若它們被旋轉(zhuǎn)過,則與原來的圖案是不同的,魔術(shù)師通過觀察發(fā)現(xiàn)后三張撲克牌沒有變化,那么變化的自然是第一張撲克牌了.由于方塊4的圖案是中心對稱圖形,旋轉(zhuǎn)過的圖案與原圖案完全一樣,故選方塊4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在Rt△ABC中,∠ACB=90°,AB=6,過點C的直線MN∥AB,DAB上一點,過點DDE⊥BC,交直線MN于點E,垂足為F,連結(jié)CD,BE,

(1)當(dāng)點DAB的中點時,四邊形BECD是什么特殊四邊形?說明你的理由

(2)在(1)的條件下,當(dāng)∠A=   時四邊形BECD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c過點A(0,2),且拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當(dāng)x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為圓心,OA為半徑的圓與拋物線的另兩個交點為B,C,且BC的左側(cè),△ABC有一個內(nèi)角為60°.

(1)求拋物線的解析式;

(2)若MN與直線y=﹣2x平行,且M,N位于直線BC的兩側(cè),y1>y2,解決以下問題:

①求證:BC平分∠MBN;

②求△MBC外心的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A-1,0),B3,0)兩點.

1)求該拋物線的解析式;

2)求該拋物線的對稱軸以及頂點坐標(biāo);

3)設(shè)(1)中的拋物線上有一個動點P,當(dāng)點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①;,其中正確的結(jié)論的序號是(

A. ①② B. ①③ C. ③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,點P為線段AD上的一個動點,PEADBC的延長線于點E

1)若∠B=35°,∠ACB=85°,求∠E得度數(shù).

2)當(dāng)點P在線段AD上運動時,設(shè)∠B=α,∠ACB=ββα),求∠E得大。ㄓ煤α、β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的周長是21,OB,OC分別平分∠ABC和∠ACBODBCD,且OD=4, ABC的面積是(

A.21B.42C.56D.84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:

①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).

其中正確的結(jié)論有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習(xí)冊答案