【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點E在BD上,且 .
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.
【答案】
(1)解:∠BAE與∠CAD相等.
理由:∵ ,
∴△ABC∽△AED,
∴∠BAC=∠EAD,
∴∠BAE=∠CAD
(2)解:△ABE與△ACD相似.
∵ = ,
∴ = .
在△ABE與△ACD中,
∵ = ,∠BAE=∠CAD,
∴△ABE∽△ACD
【解析】(1)先根據(jù)題意得出△ABC∽△AED,由相似三角形的性質(zhì)即可得出結(jié)論;(2)先根據(jù)題意得出 = ,再由∠BAE=∠CAD即可得出結(jié)論.
【考點精析】通過靈活運用相似三角形的判定,掌握相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①②,試研究其中∠1、∠2與∠3、∠4之間的數(shù)量關(guān)系;
(2)如果我們把∠1、∠2稱為四邊形的外角,那么請你用文字描述上述的關(guān)系式;
(3)用你發(fā)現(xiàn)的結(jié)論解決下列問題:
如圖,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結(jié)合處,繩子自然下垂呈拋物線狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時木板到地面的距離.(供選用數(shù)據(jù): ≈1.8, ≈1.9, ≈2.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果△ABC和△DEF這兩個三角形全等,點C和點E,點B和點D分別是對應(yīng)點,則另一組對應(yīng)點是________,對應(yīng)邊是______________,對應(yīng)角是_____________,表示這兩個三角形全等的式子是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙兩個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄.甲、乙兩個小組各項得分如下表:
小組 | 研究報告 | 小組展示 | 答辯 |
甲 | 91 | 80 | 78 |
乙 | 79 | 83 | 90 |
(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果研究報告、小組展示、答辯按照4:3:3計算成績,哪個小組的成績最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,∠A=36°,∠ABC=∠ACB,∠1=∠2,∠3=∠4,BD與CE交于點O,則圖中等腰三角形有( 。
A. 6個 B. 7個 C. 8個 D. 9個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,且拋物線經(jīng)過A(﹣1,0),C(0,﹣5)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)設(shè)點P為拋物線上的一個動點,連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時點P的坐標(biāo);
(3)在拋物線上BC段有另一個動點Q,以點Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運動的過程中是否存在一個最大⊙Q?若存在,請直接寫出最大⊙Q的半徑;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理a2+b2=c2本身就是一個關(guān)于a,b,c的方程,滿足這個方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達哥拉斯學(xué)派提出了一個構(gòu)造勾股數(shù)組的公式,根據(jù)該公式可以構(gòu)造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個勾股數(shù)組為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com