【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,且拋物線經(jīng)過(guò)A(﹣1,0),C(0,﹣5)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)設(shè)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時(shí)點(diǎn)P的坐標(biāo);
(3)在拋物線上BC段有另一個(gè)動(dòng)點(diǎn)Q,以點(diǎn)Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運(yùn)動(dòng)的過(guò)程中是否存在一個(gè)最大⊙Q?若存在,請(qǐng)直接寫(xiě)出最大⊙Q的半徑;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:∵對(duì)稱軸為x=2,且拋物線經(jīng)過(guò)A(﹣1,0),
∴B(5,0).
把B(5,0),C(0,﹣5)分別代入y=mx+n得 ,解得: ,
∴直線BC的解析式為y=x﹣5.
設(shè)y=a(x﹣5)(x+1),把點(diǎn)C的坐標(biāo)代入得:﹣5a=﹣5,解得:a=1,
∴拋物線的解析式為:y=x2﹣4x﹣5
(2)
解:①過(guò)點(diǎn)C作CP1⊥BC,交拋物線于點(diǎn)P1,如圖,
則直線CP1的解析式為y=﹣x﹣5,
由 ,解得: (舍去), ,
∴P1(3,﹣8);
②過(guò)點(diǎn)B作BP2⊥BC,交拋物線于P2,如圖,
則BP2的解析式為y=﹣x+5,
由 ,解得: (舍去), ,
∴P2(﹣2,7)
(3)
解:由題意可知,Q點(diǎn)距離BC最遠(yuǎn)時(shí),半徑最大.平移直線BC,使其與拋物線只有一個(gè)公共點(diǎn)Q(即相切),設(shè)平移后的直線解析式為y=x+t,
由 ,消去y整理得x2﹣5x﹣5﹣t=0,
△=25+4(5+t)=0,解得t=﹣ ,
∴平移后與拋物線相切時(shí)的直線解析式為y=x﹣ ,且Q( ,﹣ ),
連接QC、QB,作QE⊥BC于E,如圖,
設(shè)直線y=x﹣ 與y軸的交點(diǎn)為H,連接HB,
則 ,
∵CH=﹣5﹣(﹣ )= ,
∴ = ,
∴ ,
∵ ,BC= ,
∴QE= ,
即最大半徑為
【解析】(1)根據(jù)對(duì)稱軸及A點(diǎn)坐標(biāo)得出B點(diǎn)坐標(biāo),從而得出直線BC解析式,再由A、B、C三點(diǎn)坐標(biāo)得出拋物線解析式;(2)分別過(guò)B、C兩點(diǎn)作BC的垂線,得出垂線的解析式,與拋物線解析式聯(lián)立解出P點(diǎn);(3)平移BC到與拋物線剛好相切之處,此時(shí)的切點(diǎn)即為Q點(diǎn),此時(shí)Q點(diǎn)距BC的距離最大,也就是半徑最大.由于初中階估沒(méi)學(xué)點(diǎn)到直線的距離公式,那么這里可以用等面積法進(jìn)行處理.設(shè)切線與y軸的交點(diǎn)為H,則△HBC與△QBC的面積相等,算出面積,再以BC為底,算出BC邊上的高即為答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過(guò)點(diǎn)A(4,﹣5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)連結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點(diǎn)E在y軸的正半軸上,且∠BEO=∠ABC,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,且 .
(1)試問(wèn):∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點(diǎn)O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,且 .
(1)試問(wèn):∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,則∠CDF= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),∠A與∠1、∠2之間的數(shù)量關(guān)系為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)A(﹣1,0),B(5,0),C(0,- )三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是四邊形ABCD外接圓上任意一點(diǎn),且不與四邊形頂點(diǎn)重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點(diǎn)A到PB和PC的距離之和AE+AF= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com