【題目】已知:如圖所示,

(1)作出△ABC關(guān)于y軸對(duì)稱的△A′B′C′,并寫出△A′B′C′三個(gè)頂點(diǎn)的坐標(biāo).

(2)x軸上畫出點(diǎn)P,使PA+PC最小,寫出作法.

【答案】(1)作圖見解析,A′(1,2),B′(3,1),C′(4,3);(2)作圖見解析.

【解析】試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于y軸對(duì)稱的點(diǎn)A′、B′、C′的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出各點(diǎn)的坐標(biāo);

(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C″的位置,連接AC″與x軸相交于點(diǎn)P,根據(jù)軸對(duì)稱確定最短路線問題,點(diǎn)P即為所求作的點(diǎn).

試題解析:(1)△A′B′C′如圖所示,A′(﹣1,2),B′(﹣3,1),C′(﹣4,3);

(2)如圖所示,點(diǎn)P即為使PA+PC最小的點(diǎn).

作法:作出C點(diǎn)關(guān)于x軸對(duì)稱的點(diǎn)C″(4,﹣3),

連接C″Ax軸于點(diǎn)P,

點(diǎn)P點(diǎn)即為所求點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等腰三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:

(1)如圖①,若點(diǎn)P在線段AB上,且AC=1+,PA=,則:

①線段PB= ,PC= ;

②猜想:PA2,PB2,PQ2三者之間的數(shù)量關(guān)系為 ;

(2)如圖②,若點(diǎn)P在AB的延長(zhǎng)線上,在(1)中所猜想的結(jié)論仍然成立,請(qǐng)你利用圖②給出證明過程;

(3)若動(dòng)點(diǎn)P滿足,求的值.(提示:請(qǐng)利用備用圖進(jìn)行探求)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知高鐵的速度比動(dòng)車的速度快50 km/h,小路同學(xué)從蘇州去北京游玩,本打算乘坐動(dòng)車,需要6h才能到達(dá);由于得知開通了高鐵,決定乘坐高鐵,她發(fā)現(xiàn)乘坐高鐵比乘坐動(dòng)車節(jié)約72 min.求高鐵的速度和蘇州與北京之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)表.調(diào)查結(jié)果統(tǒng)計(jì)表

組別

分組(單位:元)

人數(shù)

4

16

2

調(diào)查結(jié)果扇形統(tǒng)計(jì)圖

請(qǐng)根據(jù)以上圖表,解答下列問題:

1)這次被調(diào)查的同學(xué)共有 人, ;

2)求扇形統(tǒng)計(jì)圖中扇形的圓心角的度數(shù);

3)若該校共有學(xué)生1000人,請(qǐng)估計(jì)每月零花錢的數(shù)額范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=16,OAB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)OB重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形CODAP,BQ分別切優(yōu)弧于點(diǎn)PQ,且點(diǎn)P, QAB異側(cè),連接OP

(1)求證:APBQ;

(2)當(dāng)BQ=4時(shí),求扇形COQ的面積及的長(zhǎng)(結(jié)果保留π);

(3)若APO的外心在扇形COD的內(nèi)部,請(qǐng)直接寫出OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點(diǎn)B,連接PA交⊙O于點(diǎn)C,連接BC

(1)求證:∠BAC=CBP;

(2)求證:PB2=PCPA;

(3)當(dāng)AC=6,CP=3時(shí),求sinPAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,NDC的中點(diǎn),MAD上異于D的點(diǎn),且∠NMB=MBC,則tanABM=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,B,C,D均在已知圓上,ADBC,CA平分∠BCD,ADC=120°,四邊形ABCD的周長(zhǎng)為10.

(1)求此圓的半徑;

(2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案