(2006•徐州)如圖,圓心角都是90°的扇形OAB與扇形OCD疊放在一起,OA=3,OC=1,分別連接AC、BD,則圖中陰影部分的面積為( )

A.π
B.π
C.2π
D.4π
【答案】分析:通過(guò)分析圖可知:△ODB經(jīng)過(guò)旋轉(zhuǎn)90°后能夠和△OCA重合(證全等也可),因此圖中陰影部分的面積=扇形AOB的面積-扇形COD的面積,所以S=π×(9-1)=2π.
解答:解:由圖可知,將△OAC順時(shí)針旋轉(zhuǎn)90°后可與△ODB重合,
∴S△OAC=S△OBD;
因此S陰影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.
故選C.
點(diǎn)評(píng):本題中陰影部分的面積可以看作是扇形AOB與扇形COD的面積差,求不規(guī)則的圖形的面積,可以轉(zhuǎn)化為幾個(gè)規(guī)則圖形的面積的和或差來(lái)求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•徐州)如圖,在平面直角坐標(biāo)系中,直線y=-2x+12與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求△OAC的面積;
(3)若P為線段OA(不含O、A兩點(diǎn))上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD∥AB交直線OC于點(diǎn)D,連接PC.設(shè)OP=t,△PDC的面積為S,求S與t之間的函數(shù)關(guān)系式;S是否存在最大值?如果存在,請(qǐng)求出來(lái);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江蘇省徐州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•徐州)如圖,在平面直角坐標(biāo)系中,直線y=-2x+12與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求△OAC的面積;
(3)若P為線段OA(不含O、A兩點(diǎn))上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD∥AB交直線OC于點(diǎn)D,連接PC.設(shè)OP=t,△PDC的面積為S,求S與t之間的函數(shù)關(guān)系式;S是否存在最大值?如果存在,請(qǐng)求出來(lái);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2006•徐州)如圖,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)填上正確的理由:因?yàn)椤螪AC=∠C(已知),所以AD∥BC   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省嘉興市數(shù)學(xué)素質(zhì)評(píng)估卷10(秀洲區(qū)高照中學(xué))(解析版) 題型:解答題

(2006•徐州)如圖,已知AB是⊙O的直徑,PA是⊙O的切線,過(guò)點(diǎn)B作BC∥OP交⊙O于點(diǎn)C,連接AC.
(1)求證:△ABC∽△POA;
(2)若AB=2,PA=,求BC的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年江蘇省徐州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•徐州)如圖,已知AB是⊙O的直徑,PA是⊙O的切線,過(guò)點(diǎn)B作BC∥OP交⊙O于點(diǎn)C,連接AC.
(1)求證:△ABC∽△POA;
(2)若AB=2,PA=,求BC的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案