【題目】小明和小龍沿著一條筆直的馬路進(jìn)行長(zhǎng)跑比賽,小明在比賽過(guò)程中始終領(lǐng)先小龍,并勻速跑完了全程,小龍勻速跑了幾分鐘后提速和小明保持速度一致,又過(guò)了1分鐘,小龍因體力問(wèn)題,不得已又減速,并一直以這一速度完成了余下的比賽, 完成比賽所用時(shí)間比小明多了1分鐘,已知小明跑后4分20秒時(shí)領(lǐng)先小龍175米,小明與小龍之間的距離(米)與他們所用時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.有下列說(shuō)法:①小明到達(dá)終點(diǎn)時(shí),小龍距離終點(diǎn)還有225米;②小明的速度是300米/分;③小龍?zhí)崴偾暗乃俣仁?00米/分;④比賽全程為1 500米.其中正確的是( )
A. ①②③ B. ②③④
C. ①②④ D. ①③④
【答案】C
【解析】
①觀察函數(shù)圖象結(jié)合題意可知,當(dāng)s取最大值時(shí),小明到達(dá)終點(diǎn),由此得出說(shuō)法①正確;②根據(jù)速度=路程÷時(shí)間可算出小龍減速后的速度,再根據(jù)小明的速度=小龍減速后的速度+二者速度差即可求出小明的速度,從而得出說(shuō)法②正確;③根據(jù)4分鐘時(shí)二者的距離=175-×二者速度差即可求出當(dāng)t=4時(shí),s的值,再根據(jù)小龍?zhí)崴偾暗乃俣?/span>=小明的速度-150÷3即可求出小龍?zhí)崴偾暗乃俣,?duì)比后可得出說(shuō)法③不正確;④根據(jù)路程=速度×?xí)r間結(jié)合小明的速度和跑完全程的時(shí)間即可得出說(shuō)法④正確.綜上即可得出結(jié)論.
解:①觀察函數(shù)圖象可知s最大值為225,此時(shí)正好小明到達(dá)終點(diǎn),
∴小明到達(dá)終點(diǎn)時(shí),小龍距離終點(diǎn)還有225米,說(shuō)法①正確;
②小龍減速后的速度為225÷1=225(米/分鐘),
小明的速度為225+(225-175)÷(6-1-4)=300(米/分鐘),說(shuō)法②正確;
③當(dāng)t=4時(shí),s的值為175-(300-225)×(4-4)=150(米),
小龍?zhí)崴偾暗乃俣葹?/span>300-150÷3=250(米/分鐘),說(shuō)法③不正確;
④比賽全程為300×(6-1)=1500(米),說(shuō)法④正確.
綜上所述:正確的說(shuō)法有①②④.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在邊AB,BC上,AE=BF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)小球P第一次碰到點(diǎn)E時(shí),小球P與正方形的邊碰撞的次數(shù)為 , 小球P所經(jīng)過(guò)的路程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)θ度,并使各邊長(zhǎng)變?yōu)樵瓉?lái)的n倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)如圖①,對(duì)△ABC作變換[60°, ]得△AB′C′,則S△AB′C′:S△ABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得△AB′C′,使點(diǎn)B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=10cm,BC=6cm,AC=8cm,BD是∠ABC的角平分線。
(1)求△ABC的面積;
(2)求△ABC的角平分線BD的長(zhǎng);
(3)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn),從點(diǎn)B以每秒2cm的速度向A運(yùn)動(dòng),幾秒種后△EAD是直角三角形?(此小題可直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(3)班為了組隊(duì)參加學(xué)校舉行的“五水共治”知識(shí)競(jìng)賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行了四次“五水共治”模擬競(jìng)賽,成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)第三次成績(jī)的優(yōu)秀率是多少?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已求得甲組成績(jī)優(yōu)秀人數(shù)的平均數(shù) =7,方差 =1.5,請(qǐng)通過(guò)計(jì)算說(shuō)明,哪一組成績(jī)優(yōu)秀的人數(shù)較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題及函數(shù)y=x,y=x2和y= 的圖象:
①如果 ,那么0<a<1;
②如果 ,那么a>1;
③如果 ,那么﹣1<a<0;
④如果 時(shí),那么a<﹣1.
則( )
A.正確的命題是①④
B.錯(cuò)誤的命題是②③④
C.正確的命題是①②
D.錯(cuò)誤的命題只有③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過(guò)t秒,以點(diǎn)P為圓心, cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫(xiě)出t可取的一切值(單位:秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延長(zhǎng)線上任取一點(diǎn)P,過(guò)點(diǎn)P作PD⊥BC,使得PD=2PC,則當(dāng)點(diǎn)P在BC延長(zhǎng)線上向左移動(dòng)時(shí),△ABD的面積大小變化情況是( )
A.一直變大
B.一直變小
C.先變小再變大
D.先變大再變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知射線AP是△ABC的外角平分線,連結(jié)PB、PC.
(1)如圖1,若BP平分∠ABC,且∠ACB=30°,寫(xiě)出∠APB的度數(shù).
(2)如圖1,若P與A不重合,求證:AB+AC<PB+PC.
(3)如圖2,若過(guò)點(diǎn)P作PM⊥BA,交BA延長(zhǎng)線于M點(diǎn),且∠BPC=∠BAC,求:的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com