【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,則A′E的長是( 。
A. 1 B. C. D. 2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.
圖1 圖2 圖3
(1)思路梳理
將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關(guān)系為 ;
(2)類比引申
如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,∠MON=90°,點A,B分別在射線OM、ON上.將射線OA繞點O沿順時針方向以每秒9°的速度旋轉(zhuǎn),同時射線OB繞點O沿順時針方向以每秒3°的速度旋轉(zhuǎn)(如圖2).設(shè)旋轉(zhuǎn)時間為t(0≤t≤40,單位秒).
(1)當t=8時,∠AOB= °;
(2)在旋轉(zhuǎn)過程中,當∠AOB=36°時,求t的值.
(3)在旋轉(zhuǎn)過程中,當ON、OA、OB三條射線中的一條恰好平分另外兩條射線組成的角(指大于0°而不超過180°的角)時,請求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,PB=PC,給出下面結(jié)論:①BP=CP,②EB=EC,③AD⊥BC,④EA平分∠BEC,其中正確的結(jié)論有( 。
A.①②④B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D,證明:△ABD≌△ACE,DE=BD+CE;
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角,請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點O是否在∠BAC的角平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】永祚寺雙塔,又名凌霄雙塔,是山西省會太原現(xiàn)存古建筑中最高的建筑,位于太原市城區(qū)東南向山腳畔.數(shù)學(xué)活動小組的同學(xué)對其中一個塔進行了測量.測量方法如下:如圖所示,間接測得該塔底部點B到地面上一點E的距離為48 m,塔的頂端為點A,且AB⊥CB,在點E處豎直放一根標桿,其頂端為D,在BE的延長線上找一點C,使C,D,A三點在同一直線上,測得CE=2 m.
(1)方法1,已知標桿DE=2.2 m,求該塔的高度;
(2)方法2,測量得∠ACB=47.5°,已知tan47.5°≈1.09,求該塔的高度;
(3)假如該塔的高度在方法1和方法2測得的結(jié)果之間,你認為該塔的高度大約是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以正方形的頂點為直角頂點,作等腰直角三角形,連接、,當、、三點在--條直線上時,若,,則正方形的面積是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com