【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說明理由.
【答案】(1)證明見解析;(2) 點(diǎn)O在∠BAC的角平分線上,理由見解析.
【解析】
(1)通過證明∠ABC=∠ACB,由等角對等邊得到AB=AC;(2)先證明A、O在BC的垂直平分線上,再由三線合一得到AO是∠BAC的角平分線.
(1)證明:∵OB=OC,∴∠OBC=∠OCB,
∵銳角△ABC的兩條高BD、CE相交于點(diǎn)O,
∴∠BEC=∠BDC=90°,
∵∠BEC+∠BCE+∠ABC=∠BDC+∠DBC
+∠ACB=180°,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形;
(2)解:連接AO并延長交BC于E,
∵AB=AC,OB=OC,∴AE是BC的垂直平分線,
∴∠BAE=∠CAE,∴點(diǎn)O在∠BAC的角平分線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別表示小明步行與小剛騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)小剛出發(fā)時與小明相距________米.走了一段路后,自行車發(fā)生故障進(jìn)行修理,所用的時間是________分鐘.
(2)求出小明行走的路程S與時間t的函數(shù)關(guān)系式.(寫出計算過程)
(3)請通過計算說明:若小剛的自行車不發(fā)生故障,保持出發(fā)時的速度前進(jìn),何時與小明相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點(diǎn)A落在點(diǎn)A′處,折痕為DE,則A′E的長是( 。
A. 1 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀思考:
數(shù)學(xué)課上老師出了一道分式化簡求值題目.
題目: ÷(x+1)·-,其中x=-.
“勤奮”小組的楊明同學(xué)展示了他的解法:
解:原式=-.........................................................................第一步
=-..........................................................................第二步
=...........................................................................................第三步
=..................................................................................................第四步
當(dāng)x=-時,原式=.................................................................第五步
請你認(rèn)真閱讀上述解題過程,并回答問題:
你認(rèn)為該同學(xué)的解法正確嗎?如有錯誤,請指出錯誤在第幾步,并寫出完整、正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線,
⑴寫出所有∠EOC的補(bǔ)角 ;
⑵如果∠AOD=40°,求∠POF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘客輪同時離開港口,航行的速度都是40m/min,甲客輪用15min到達(dá)點(diǎn)A,乙客輪用20min到達(dá)點(diǎn)B,若A,B兩點(diǎn)的直線距離為1000m,甲客輪沿著北偏東30°的方向航行,則乙客輪的航行方向可能是( )
A. 北偏西30° B. 南偏西30° C. 南偏東60° D. 南偏西60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.
請根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為________;
(2)請補(bǔ)全條形統(tǒng)計圖;
(3)該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動項(xiàng)目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(﹣3,0),點(diǎn)B(0,m),直線l:x=1.直線AB與直線l交于點(diǎn)C,連結(jié)OC.
(1)△OBC的面積與△OAC的面積比是否是定值?如果是,請求出面積比;如果不是,請說明理由.
(2)若m=2,點(diǎn)T在直線l上且TA=TB,求點(diǎn)T的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com