【題目】(閱讀理解)
已知:如圖,等腰直角三角形中,,是平分線,交邊于點(diǎn).
求證:.
證明:在上截取,連接,
則由已知條件易知:.
∴,
又∵,∴是等腰直角三角形,
∴ ∴.
(數(shù)學(xué)思考)
現(xiàn)將原題中的“是平分線,交邊于點(diǎn)”換成“是的外角平分線,交邊的延長(zhǎng)線于點(diǎn)”,如圖,其他條件不變,請(qǐng)你猜想線段之間的數(shù)量關(guān)系,并證明你的猜想.
【答案】線段之間的數(shù)量關(guān)系:DB=AE+AC=AB+AC
【解析】
在CA的延長(zhǎng)線上截取AE=AB,連接DE,由角平分線的性質(zhì)就可以得出△EAD≌△BAD,得出∠AED=∠ABD=90°,DB=DE,就可以得出DB=AB+AC.
解:如圖,在CA的延長(zhǎng)線上截取AE=AB,連接DE.
如圖,在CA的延長(zhǎng)線上截取AE=AB,連接DE.
∵AD平分∠EAB,
∴∠EAD=∠BAD,
在△EAD和△BAD中,
,
△EAD≌△BAD(SAS).
∴∠AED=∠ABD,DB=DE,
∵AB=BC,∠ABC=90°
∴∠C=45°,∠ABD=90°,
∴∠AED=∠ABD=90°,
∴∠EDC=180°-∠AED -∠C=180°-90°-45°=45°,
∴∠EDC=∠C,
∴DE=EC.
∴BD=EC.
∵EC=AE+AC,
∴BD=AE+AC
∴DB=AE+AC=AB+AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的等邊三角形的頂點(diǎn)分別在邊,上當(dāng)在邊上運(yùn)動(dòng)時(shí),隨之在邊上運(yùn)動(dòng),等邊三角形的形狀保持不變,運(yùn)動(dòng)過(guò)程中,點(diǎn)到點(diǎn)的最大距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD為邊BC上的中線,點(diǎn)E在AD上,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧,交BE的延長(zhǎng)線于點(diǎn)F,點(diǎn)G在EF上,且∠EAG=∠CAF,連接CE.
(1)依題意補(bǔ)全圖形;
(2)求證:FG=CE;
(3)若EF平分∠AEC,則∠BAE與∠ABE滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時(shí),△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時(shí),y=110﹣5t;④在運(yùn)動(dòng)過(guò)程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個(gè);⑤當(dāng)△BPQ與△BEA相似時(shí),t=14.5.其中正確結(jié)論的序號(hào)是( )
A. ①④⑤ B. ①②④ C. ①③④ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,,連接,為上一點(diǎn),連接,過(guò)點(diǎn)作交于點(diǎn),則圖中的全等三角形共有( )
A.4對(duì)B.3對(duì)C.2對(duì)D.1對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)(k,b都是常數(shù),且),的圖象經(jīng)過(guò)點(diǎn)(1,0)和(0,3).
(1)求此函數(shù)的表達(dá)式.
(2)已知點(diǎn)在該函數(shù)的圖象上,且.
①求點(diǎn)P的坐標(biāo).
②若函數(shù)(a是常數(shù),且)的圖象與函數(shù)的圖象相交于點(diǎn)P,寫(xiě)出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲打字員計(jì)劃用若干小時(shí)完成文稿的電腦輸入工作,兩小時(shí)后,乙打字員協(xié)助此項(xiàng)工作,且乙打字員文稿電腦輸入的速度是甲的1.5倍,結(jié)果提前6小時(shí)完成任務(wù),則甲打字員原計(jì)劃完成此項(xiàng)工作的時(shí)間是( 。
A.17小時(shí)B.14小時(shí)C.12小時(shí)D.10小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)和點(diǎn),且,滿足.
(1)______,______.
(2)點(diǎn)在直線的右側(cè),且:
①若點(diǎn)在軸上,則點(diǎn)的坐標(biāo)為______;
②若為直角三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離y(km)與時(shí)間x(h)的函數(shù)圖象.則下列結(jié)論:
(1)a=40,m=1;
(2)乙的速度是80km/h;
(3)甲比乙遲h到達(dá)B地;
(4)乙車行駛小時(shí)或小時(shí),兩車恰好相距50km.
正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com