【題目】對于一組數(shù)據(jù):x1,x2,x3x10,若去掉一個最大值和一個最小值,則下列統(tǒng)計量一定不會發(fā)生變化的是(  )

A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差

【答案】B

【解析】

根據(jù)中位數(shù)的定義:位于中間位置或中間兩數(shù)的平均數(shù)可以得到去掉一個最高分和一個最低分不影響中位數(shù).

先去掉一個最高分,去掉一個最低分,再進行統(tǒng)計,則上述四個統(tǒng)計量中,一定不會發(fā)生變化的是中位數(shù);平均數(shù)、眾數(shù)、方差都會發(fā)生改變;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣x+3與坐標(biāo)軸分別交于點A,B,點P在拋物線y=﹣(x﹣2+4上,能使△ABP為等腰三角形的點P的個數(shù)有(

A.3個 B.4個 C.5個 D.6個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結(jié)論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)

(1)畫出格點ABC(頂點均在格點上)關(guān)于直線DE對稱的A1B1C1;

(2)在DE上畫出點Q,使QA+QC最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點A、C的坐標(biāo)分別是(0,4)、(-1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形ABOC

(1)若拋物線過點C、A、A,求此拋物線的解析式;

(2)點M是第一象限內(nèi)拋物線上的一動點,問:當(dāng)點M在何處時,AMA的面積最大?最大面積是多少?并求出此時M的坐標(biāo);

(3)若P為拋物線上的一動點,N為x軸上的一動點,點Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q 構(gòu)成平行四邊形時,求點P的坐標(biāo),當(dāng)這個平行四邊形為矩形時,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P為拋物線上,且位于x軸下方

(1)如圖1,若P(1,-3)、B(4,0),

求該拋物線的解析式;

若D是拋物線上一點,滿足DPO=POB,求點D的坐標(biāo);

(2) 如圖2,已知直線PA、PB與y軸分別交于E、F兩點當(dāng)點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果代數(shù)式-2a+3b5的值為12,那么代數(shù)式9b6a+2的值等于(

A.23 B.-23 C.19D.-19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】巴黎與北京的時間差為﹣7時(正數(shù)表示同一時刻比北京時間早的時數(shù)),如果北京時間是721400,那么巴黎時間是( )

A. 7221B. 727C. 717D. 725

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=6cm,BC=8cm.點PA點出發(fā)沿A→C→B路徑向終點運動,終點為B點;點QB點出發(fā)沿B→C→A路徑向終點運動,終點為A點.點PQ分別以每秒1cm3cm的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過PQPElEQFlF.設(shè)運動時間為t秒,則當(dāng)t=_________秒時,PECQFC全等.

查看答案和解析>>

同步練習(xí)冊答案