【題目】如圖,在邊長為個單位長度的小正方形組成的的網(wǎng)格中,給出了格點(網(wǎng)格線的交點)為端點的線段

(1)將線段通過平移使得點和點重合,點的對應(yīng)點為,則應(yīng)該先將線段 平移個單位,再向上平移 單位,畫出平移后對應(yīng)的線段

(2)將線段點按順時針方向旋轉(zhuǎn)點的對應(yīng)點為 ,畫出線段

(3)填空:

【答案】1)右,2,作圖見解析;(2)見解析;(3135°

【解析】

(1)利用對應(yīng)點移動的規(guī)律進而得出圖形的平移規(guī)律;

(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點的位置,然后連接即可;

(3)將線段C點旋轉(zhuǎn),的對應(yīng)點為,利用勾股定理的逆定理求得的度數(shù),即可求解.

(1)根據(jù)題意,應(yīng)該先將線段向右平移個單位,再向上平移2個單位,線段如圖所示:

(2)線段如圖所示:

(3) 將線段C點旋轉(zhuǎn)的對應(yīng)點為,連接、,

,

,

為等腰直角三角形,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°OA=2,若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內(nèi),將RtOAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.

1)求經(jīng)過點O,C,A三點的拋物線的解析式.

2)若點M是拋物線上一點,且位于線段OC的上方,連接MO、MC,問:點M位于何處時三角形MOC的面積最大?并求出三角形MOC的最大面積.

3)拋物線上是否存在一點P,使∠OAP=BOC?若存在,請求出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,上的一點,在同側(cè)作正方形,正方形分別為對角線的中點,連結(jié)當點沿著線段由點向點方向上移動時,四邊形的面積變化情況為( )

A.不變B.先減小后增大

C.先增大后減小D.一直減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)游泳館夏季推出兩種收費方式.方式一:先購買會員證,會員證200元,只限本人當年使用,憑證游泳每次需另付費10元:方式二:不購買會員證,每次游泳需付費20元.

1)若甲計劃今年夏季游泳的費用為500元,則選擇哪種付費方式游泳次數(shù)比較多?

2)若乙計劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費方式游泳花費比較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準備從體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元。

(1)求購買一個足球、一個籃球各需多少元?

(2)根據(jù)學(xué)校實際情況,需從體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學(xué)最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ABACAB=,BC=,對角線ACBD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點EF,下列說法:①在旋轉(zhuǎn)過程中,AF=CE. OB=AC,③在旋轉(zhuǎn)過程中,四邊形ABEF的面積為,④當直線AC繞點O順時針旋轉(zhuǎn)30°時,連接BF,DE則四邊形BEDF是菱形,其中正確的是(

A.①②④B.① ②C.①②③④D.② ③ ④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線yx+2x軸交于點A,與y軸交于點C.拋物線yax2+bx+c的對稱軸是x=﹣且經(jīng)過AC兩點,與x軸的另一交點為點B

1直接寫出點B的坐標;求拋物線解析式.

2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.

3)拋物線上有一點M,過點MMN垂直x軸于點N,使得以點AM、N為頂點的三角形與△ABC相似,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c經(jīng)過點A30)和點B23),過點A的直線與y軸的負半軸相交于點C,且tanCAO=

1)求這條拋物線的表達式及對稱軸;

2)聯(lián)結(jié)ABBC,求∠ABC的正切值;

3)若點Dx軸下方的對稱軸上,當SDBC=SADC時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點、分別在軸,軸上,頂點在第二象限,點的坐標為.將線段繞點逆時針旋轉(zhuǎn)至線段,若反比例函數(shù)y=k≠0)的圖象經(jīng)過A、D兩點,則k值為_________

查看答案和解析>>

同步練習(xí)冊答案