【題目】△OAB是以正多邊形相鄰的兩個(gè)頂點(diǎn)A,B與它的中心O為頂點(diǎn)的三角形,若△OAB的一個(gè)內(nèi)角為70°,則該正多邊形的邊數(shù)為.

【答案】9
【解析】當(dāng)∠OAB=70°時(shí),∠AOB=40°,則多邊形的邊數(shù)是:360÷40=9;當(dāng)∠AOB=70°時(shí),360÷70結(jié)果不是整數(shù),故不符合條件.故答案是:9.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正多邊形和圓的相關(guān)知識(shí)可以得到問題的答案,需要掌握?qǐng)A的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角;圓的外切四邊形的兩組對(duì)邊的和相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次體檢中,某班學(xué)生視力結(jié)果如下表:

0.7以下

0.7

0.8

0.9

1.0

1.0以上

5%

8%

15%

20%

40%

12%

從表中看出全班視力數(shù)據(jù)的眾數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對(duì)稱軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.

則正確的結(jié)論是(

A. (1)(2)(3)(4) B. (2)(4)(5) C. (2)(3)(4) D. (1)(4)(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)M是二次函數(shù)y=ax2(a>0)圖象上的一點(diǎn),點(diǎn)F的坐標(biāo)為(0,),直角坐標(biāo)系中的坐標(biāo)原點(diǎn)O與點(diǎn)M,F(xiàn)在同一個(gè)圓上,圓心Q的縱坐標(biāo)為

(1)求a的值;

(2)當(dāng)O,Q,M三點(diǎn)在同一條直線上時(shí),求點(diǎn)M和點(diǎn)Q的坐標(biāo);

(3)當(dāng)點(diǎn)M在第一象限時(shí),過點(diǎn)M作MN⊥x軸,垂足為點(diǎn)N,求證:MF=MN+OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,如果點(diǎn)A,點(diǎn)C為某個(gè)菱形的一組對(duì)角的頂點(diǎn),且點(diǎn)AC在直線y = x上,那么稱該菱形為點(diǎn)A,C的“極好菱形”. 下圖為點(diǎn)A,C的“極好菱形”的一個(gè)示意圖.

已知點(diǎn)M的坐標(biāo)為(1,1),點(diǎn)P的坐標(biāo)為(3,3).

(1)點(diǎn)E(2,1),F(1,3),G(4,0)中,能夠成為點(diǎn)M,P的“極好菱形”的頂點(diǎn)的是 ;

(2)如果四邊形MNPQ是點(diǎn)M,P的“極好菱形”.

①當(dāng)點(diǎn)N的坐標(biāo)為(3,1)時(shí),求四邊形MNPQ的面積;

②當(dāng)四邊形MNPQ的面積為8,且與直線y = x + b有公共點(diǎn)時(shí),寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.

(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)

(2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由;

(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙O的半徑為7cm,圓心O到直線l的距離為8cm,則直線l與⊙O的位置關(guān)系是( 。
A.相交
B.內(nèi)含
C.相切
D.相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為6的正△ABC中,若以A為圓心, 以8為半徑作⊙A, 則⊙A與邊BC的交點(diǎn)的個(gè)數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=2x+m(m>0)與x軸交于點(diǎn)A(﹣2,0),直線y=﹣x+n(n>0)與x軸、y軸分別交于B、C兩點(diǎn),并與直線y=2x+m(m>0)相交于點(diǎn)D,若AB=4.

(1)求點(diǎn)D的坐標(biāo);

(2)求出四邊形AOCD的面積;

(3)若點(diǎn)P為x軸上一動(dòng)點(diǎn),且使PD+PC的值最小,不寫過程,直接寫出點(diǎn)P的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案