26、如圖所示,△ABC的∠BAC=120°,以BC為邊向形外作等邊△BCD,把△ABD繞著D點按順時針方向旋轉60°到△ECD的位置,若AB=3,AC=2,求∠BAD的度數(shù)和線段AD的長.
分析:依四點共圓的判定與性質(zhì)得出∠ECD=∠ABD.由于∠ABD+∠ACD=360°-120°-60°=180°,即∠ECD+∠ACD=180°,∠ACE=180°,那么A,C,E共線;由于∠ADE=60°,AD=ED,因此△ADE也是等邊三角形,可得出∠BAD=60°,AD=AE=AC+AB.
解答:解:∵△ABC的∠BAC=120°,以BC為邊向形外作等邊△BCD,
∴∠BAC+∠BDC=120°+60°=180°,
∴A,B,D,C四點共圓,
∴∠ECD=∠ABD,在四邊形ACDB中,
∠ABD+∠ACD=360°-∠BAC-∠CDB=360°-120°-60=180°=∠ACD+∠ECD,
即∠ACE=180°即A、C、E共線,
∵∠ADB=∠CDE,
∴∠ADB+∠ADC=∠CDE+∠ADC=∠BDC=∠ADE=60°,AD=ED,
故△ADE是等邊三角形,
∴∠BAD=60°,
AD=AE=AC+AB=3+2=5.
點評:本題利用了:①等邊三角形的性質(zhì),三角為60度,三邊相等;②四邊形內(nèi)角和為360度;③一個角的度數(shù)為180度,則三點共線;④角的和差關系求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•內(nèi)江)如圖所示,△ABC的頂點是正方形網(wǎng)格的格點,則sinA的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,△ABC的三個頂點的坐標分別為A(4,3)、B(-2,1)、C(0,-1),則△ABC外接圓的圓心坐標是
(1,2)
(1,2)
;△ABC外接圓的半徑為
10
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示為△ABC的各邊,角的數(shù)據(jù).利用全等三角形的條件,從中選取適當?shù)臄?shù)據(jù),畫出與△ABC全等的三角形,則方法共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示三角形ABC的面積為( 。ヽm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,△ABC的頂點坐標分別是A(0,0)、B(6,0)、C(5,5).
(1)求△ABC的面積;
(2)將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到△A′B′C′,在平面直角坐標系中畫出△A′B′C′;
(3)寫出A′、B′、C′的坐標.

查看答案和解析>>

同步練習冊答案