【題目】某校舉辦的八年級學(xué)生數(shù)學(xué)素養(yǎng)大賽共設(shè)個項(xiàng)目:七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用,每個項(xiàng)目得分都按一定百分比折算后計(jì)入總分,總分高的獲勝,下表為小米和小麥兩位同學(xué)的得分情況(單位:分):
七巧板拼圖 | 趣題巧解 | 數(shù)學(xué)應(yīng)用 | |
小米 | |||
小麥 |
若七巧板拼圖,趣題巧解,數(shù)學(xué)應(yīng)用三項(xiàng)得分分別按折算計(jì)入總分,最終誰能獲勝?
若七巧板拼圖按折算,小麥 (填“可能”或“不可能”)獲勝.
【答案】(1)小麥獲勝;(2)不可能
【解析】
(1)按照加權(quán)平均數(shù)的算法直接結(jié)合表格信息進(jìn)行計(jì)算,然后加以比較即可;
(2)首先設(shè)趣味巧解占,數(shù)學(xué)應(yīng)用占,根據(jù)題意分別算出小米與小麥的總分,再者利用作差法比較二者總分的大小,最后進(jìn)一步分析即可得出答案.
(1)由題意可得:
小米總分為:(分),
小麥總分為:(分),
∵,
∴小麥獲勝;
(2)設(shè)趣味巧解占,數(shù)學(xué)應(yīng)用占,
則小米總分為:(分),
小麥總分為:(分),
∵,
∴
=
=
=,
∵,
∴小米總分大于小麥總分,
∴小麥不可能獲勝,
故答案為:不可能.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.點(diǎn)O是的中點(diǎn),過點(diǎn)O的直線與從重合的位置開始,繞點(diǎn)O作逆時針旋轉(zhuǎn),交于點(diǎn)D,過點(diǎn)C作交直線于點(diǎn)E,設(shè)直線的旋轉(zhuǎn)角為.
(1)當(dāng)四邊形是等腰梯形時,則=_______,此時________;
(2)當(dāng)四邊形是直角梯形時,則=_________,此時_________;
(3)當(dāng)為幾度時,判斷四邊形是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)后得到正方形AB′C′D′,邊B′C′與DC交于點(diǎn)O,則四邊形AB′OD的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在邊BC上(點(diǎn)E不與點(diǎn)B重合),連接AE,過點(diǎn)B作BF⊥AE于點(diǎn)F,交CD于點(diǎn)G.
(1)求證:△ABF∽△BGC;
(2)若AB=2,G是CD的中點(diǎn),求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,把兩塊全等的含45°角的直角三角板ABC和DEF疊放在一起,使三角板DEF的銳角頂點(diǎn)D與三角板ABC的斜邊中點(diǎn)O重合.把三角板ABC固定不動,讓三角板DEF繞點(diǎn)D旋轉(zhuǎn),兩邊分別與線段AB,BC相交于點(diǎn)P,Q,易說明△APD∽△CDQ.根據(jù)以上內(nèi)容,回答下列問題:
(1)如圖2,將含30°角的三角板DEF(其中∠EDF=30°)的銳角頂點(diǎn)D與等腰△ABC(其中∠ABC=120°)的底邊中點(diǎn)O重合,兩邊DF,DE分別與邊AB,BC相交于點(diǎn)P,Q.寫出圖中的相似三角形__ _ (直接填在橫線上);
(2)其他條件不變,將三角板DEF旋轉(zhuǎn)至兩邊DF,DE分別與邊AB的延長線、邊BC相交于點(diǎn)P,Q.上述結(jié)論還成立嗎?請你在圖3上補(bǔ)全圖形,并說明理由;
(3)在(2)的條件下,連接PQ,△APD與△DPQ是否相似?請說明理由;
(4)根據(jù)(1)(2)的解答過程,你能否將兩三角板改為更一般的三角形,使得(1)中的結(jié)論仍然成立?若能,請說明兩個三角形應(yīng)滿足的條件;若不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年1月1日新交通法規(guī)開始實(shí)施.為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機(jī)選取部分居民就“行人闖紅燈現(xiàn)象”進(jìn)行問卷調(diào)查,調(diào)查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他”四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計(jì)圖(如圖1)和部分扇形統(tǒng)計(jì)圖(如圖2).請根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查共選取 名居民;
(2)求出扇形統(tǒng)計(jì)圖中“C”所對扇形的圓心角的度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該社區(qū)共有居民1600人,估計(jì)有多少人從不闖紅燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 為⊙O 的直徑,點(diǎn) C 為⊙O 上一點(diǎn),AD 和過點(diǎn) C 的切線相互垂直,垂足為 D.
(1)求證:AC 平分∠DAB;
(2)AD 交⊙O 于點(diǎn) E,若 AD=3CD=9,求 AE 的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com