如圖,已知△ABC中,AD⊥BC于點D,AE為∠BAC的平分線,且∠B=36°,∠C=66°.求∠DAE的度數(shù).

16°

解析試題分析:先根據(jù)三角形的內角和定理求得∠BAC的度數(shù),再根據(jù)角平分線的性質求得∠CAE的度數(shù),由垂直的性質可得∠ABD=90°,再根據(jù)三角形的內角和定理求得∠CAD度數(shù),從而可以求得結果.
∵∠B=36°,∠C=66°
∴∠BAC=180°-∠ABC-∠ABC=180°-36°-68°=76°
∵AE為∠BAC的平分線
∴∠CAE=∠BAC==38°
∵AD⊥BC于D
∴∠ABD=90°
∴∠CAD=180°-∠C-∠ABD=180°-68°-90°=22°
∴∠DAE=∠CAE-∠CAD=38°-22°=16°.
考點:角平分線的性質,三角形的內角和定理
點評:解題的關鍵是熟練掌握角的平分線把角分成相等的兩個小角,且都等于大角的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設E到BC的距離為x,△DEF的面積為y,那么y關于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結論不正確的是( 。

查看答案和解析>>

同步練習冊答案