如圖所示,在直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(-3,-2),⊙A的半徑為1,P為x軸上一動(dòng)點(diǎn),PQ切⊙A于點(diǎn)Q,則當(dāng)PQ最小時(shí),P點(diǎn)的坐標(biāo)為( )

A.(-4,0)
B.(-2,0)
C.(-4,0)或(-2,0)
D.(-3,0)
【答案】分析:此題根據(jù)切線的性質(zhì)以及勾股定理,把要求PQ的最小值轉(zhuǎn)化為求AP的最小值,再根據(jù)垂線段最短的性質(zhì)進(jìn)行分析求解.
解答:解:連接AQ,AP.
根據(jù)切線的性質(zhì)定理,得AQ⊥PQ;
要使PQ最小,只需AP最小,
則根據(jù)垂線段最短,則作AP⊥x軸于P,即為所求作的點(diǎn)P;
此時(shí)P點(diǎn)的坐標(biāo)是(-3,0).
故選D.
點(diǎn)評(píng):此題應(yīng)先將問(wèn)題進(jìn)行轉(zhuǎn)化,再根據(jù)垂線段最短的性質(zhì)進(jìn)行分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,精英家教網(wǎng)sin∠BOA=
35

求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)y=
mx
(x>0,m是常數(shù))
的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

1.若△ABD的面積為4,求點(diǎn)B的坐標(biāo)

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

【小題1】若△ABD的面積為4,求點(diǎn)B的坐標(biāo)
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省鹽城市大豐市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線,垂足為C,過(guò)點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案