【題目】如圖,∠AOB=90°,OC,OD分別是∠AOE,∠BOE的平分線.
(1)求∠COD的度數(shù);
(2)若∠AOB=α°,其他條件不變,則∠COD= °;
(3)你從(1),(2)的結(jié)果中能發(fā)現(xiàn)什么規(guī)律?(不必證明)
【答案】(1)∠COD=45°;(2)α;(3)∠COD的大小總等于∠AOB的一半.
【解析】
(1)(1)根據(jù)題意,易得∠EOC= ∠AOC,∠DOE= ∠BOE進(jìn)而結(jié)合∠COD=∠EOC -∠DOE的關(guān)系,易得答案;
(2)由(1)的結(jié)論,易得當(dāng)∠AOB=α時,總有∠DOE = ∠AOB的關(guān)系,即的答案;
(3)分析(1)(2)的結(jié)論,易得答案.
(1)∵OC,OD分別是∠AOE,∠BOE的平分線.
∴∠EOC= ∠AOC,∠DOE= ∠BOE
∴∠COD=∠COE-∠DOE=∠AOE-∠BOE=(∠AOE-∠BOE)=∠AOB=×90°=45°;
(2)α;
(3)∠COD的大小總等于∠AOB的一半.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,線段AD的垂直平分線分別交AB和AC于點E、F,連接DE、DF.
(1)試判定四邊形AEDF的形狀,并證明你的結(jié)論.
(2)若DE=13,EF=10,求AD的長.
(3)△ABC滿足什么條件時,四邊形AEDF是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)將下列各數(shù)填在相應(yīng)的大括號里:
﹣50%,2014,0.61,﹣3,﹣,0,5.9,﹣3.14,﹣92
整數(shù):{ ,… }
分?jǐn)?shù):{ ,… }
負(fù)分?jǐn)?shù):{ ,… }
(2)在(1)的數(shù)據(jù)中,最大的整數(shù)是 ,最小的分?jǐn)?shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩商場自行定價銷售某一商品.
(1)甲商場將該商品提價15%后的售價為1.15元,則該商品在甲商場的原價為 ▲ 元;
(2)乙商場將該商品提價20%后,用6元錢購買該商品的件數(shù)比沒提價前少買1件,求該商品在乙商場的原價是多少?
(3)在(1)、(2)小題的條件下,甲、乙兩商場把該商品均按原價進(jìn)行了兩次價格調(diào)整.
甲商場:第一次提價的百分率是,第二次提價的百分率是;
乙商場:兩次提價的百分率都是(.
請問甲、乙兩商場,哪個商場的提價較多?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ON平分∠AOC,OM平分∠BOC,∠AOB=90°
(1)若∠AOC=40°,求∠AOM和∠MON的大小;
(2)當(dāng)銳角∠AOC的度數(shù)發(fā)生改變時,∠MON的大小是否發(fā)生改變?如不會改變,請寫出∠MON的大小,并寫出推理過程;如會改變,也請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列計算過程,發(fā)現(xiàn)規(guī)律,利用規(guī)律猜想并計算:
1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…
(1)猜想:1+2+3+4+…+n= .
(2)利用上述規(guī)律計算:1+2+3+4+…+200;
(3)嘗試計算:3+6+9+12+…3n的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次質(zhì)檢抽測中,隨機(jī)抽取某攤位20袋食鹽,測得各袋的質(zhì)量分別為(單位:G):
492,496,494,495,498,497,501,502,504,496
497,503,506,508,507,492,496,500,501,499
根據(jù)以上抽測結(jié)果,任買一袋該攤位的食鹽,質(zhì)量在497.5g~501.5g之間的概率為( )
A. B C
B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.《九章算術(shù)》中記載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個圓柱截面示意圖(如圖②),其中BO⊥CD于點A,求間徑就是要求⊙O的直徑.
(1)再次閱讀后,發(fā)現(xiàn)AB=寸,CD=寸(一尺等于十寸),通過運(yùn)用有關(guān)知識即可解決這個問題.請你補(bǔ)全題目條件.
(2)幫助小智求出⊙O的直徑 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k是不等于0的常數(shù),反比例函數(shù)與二次函數(shù)在同一坐標(biāo)系的大致圖象如圖,則它們的解析式可能分別是( )
A.y=﹣ ,y=﹣kx2+k
B.y= ,y=﹣kx2+k
C.y= ,y=kx2+k
D.y=﹣ ,y=﹣kx2﹣k
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com