【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k0)的圖象交于A(1,a),B兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及PAB的面積.

【答案】(1)y=,點(diǎn)B坐標(biāo)(3,1);(2)點(diǎn)P坐標(biāo)(,0),

【解析】

試題分析:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=﹣x+4,即可得出a,再把點(diǎn)A坐標(biāo)代入反比例函數(shù)y=,即可得出k,兩個(gè)函數(shù)解析式聯(lián)立求得點(diǎn)B坐標(biāo);

(2)作點(diǎn)B作關(guān)于x軸的對(duì)稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,求出直線AD的解析式,令y=0,即可得出點(diǎn)P坐標(biāo).

解:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=﹣x+4,

得a=﹣1+4,

解得a=3,

A(1,3),

點(diǎn)A(1,3)代入反比例函數(shù)y=,

得k=3,

反比例函數(shù)的表達(dá)式y(tǒng)=,

兩個(gè)函數(shù)解析式聯(lián)立列方程組得,

解得x1=1,x2=3,

點(diǎn)B坐標(biāo)(3,1);

(2)作點(diǎn)B作關(guān)于x軸的對(duì)稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,

D(3,﹣1),

設(shè)直線AD的解析式為y=mx+n,

把A,D兩點(diǎn)代入得,

解得m=﹣2,n=5,

直線AD的解析式為y=﹣2x+5,

令y=0,得x=,

點(diǎn)P坐標(biāo)(,0),

S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果知道a與b互為相反數(shù),且x與y互為倒數(shù),那么代數(shù)式|a + b| - 2xy的值為多少? ( )

A. 0 B. -2 C. -1 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016湖南長(zhǎng)沙第8題)若將點(diǎn)A(1,3)向左平移2個(gè)單位,再向下平移4個(gè)單位得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為(

A.(﹣2,﹣1) B.(﹣1,0) C.(﹣1,﹣1) D.(﹣2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校甲乙兩個(gè)體操隊(duì)隊(duì)員的平均身高相等,甲隊(duì)隊(duì)員身高的方差是S2=1.9,乙隊(duì)隊(duì)員身高的方差是S2=1.2,那么兩隊(duì)中隊(duì)員身高更整齊的是隊(duì).(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB是⊙O的弦,且OA=AB,則∠AOB的度數(shù)為( )
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)多邊形的內(nèi)角和等于外角和的3倍,求這個(gè)多邊形的邊數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(a2b)29,(a2b)225,a24b2________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在O中,AB是直徑,AC是弦,OEAC于點(diǎn)E,過(guò)點(diǎn)C作直線FC,使FCA=AOE,交AB的延長(zhǎng)線于點(diǎn)D.

(1)求證:FD是O的切線;

(2)設(shè)OC與BE相交于點(diǎn)G,若OG=2,求O半徑的長(zhǎng);

(3)在(2)的條件下,當(dāng)OE=3時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三邊ab、c滿足條件(ab)(a2+b2c2=0,則ABC為(  )

A. 等腰三角形 B. 直角三角形

C. 等腰三角形或直角三角形 D. 等腰直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案