【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
【答案】
(1)證明:∵四邊形ABCD是矩形,
∴AB∥DC、AD∥BC,
∴∠ABD=∠CDB,
∵BE平分∠ABD、DF平分∠BDC,
∴∠EBD= ∠ABD,∠FDB= ∠BDC,
∴∠EBD=∠FDB,
∴BE∥DF,
又∵AD∥BC,
∴四邊形BEDF是平行四邊形
(2)證明:當∠ABE=30°時,四邊形BEDF是菱形,
∵BE平分∠ABD,
∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,
∵四邊形ABCD是矩形,
∴∠A=90°,
∴∠EDB=90°﹣∠ABD=30°,
∴∠EDB=∠EBD=30°,
∴EB=ED,
又∵四邊形BEDF是平行四邊形,
∴四邊形BEDF是菱形
【解析】(1)由矩形可得∠ABD=∠CDB,結合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根據(jù)AD∥BC即可得證;(2)當∠ABE=30°時,四邊形BEDF是菱形,由角平分線知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,結合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得證.
【考點精析】本題主要考查了平行四邊形的判定與性質和菱形的判定方法的相關知識點,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,CA=CB,點O在高CH上,OD⊥CA于點D,OE⊥CB于點E,以O為圓心,OD為半徑作⊙O.
(1)求證:⊙O與CB相切于點E;
(2)如圖2,若⊙O 過點H,且AC=5,AB=6,連結EH,求△BHE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直線旋轉一周得到一個幾何體,則這個幾何體的側面積為( )
A.60πcm2
B.65πcm2
C.120πcm2
D.130πcm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=6,則扇形(圖中陰影部分)的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,⊙C經(jīng)過坐標原點O,且與x軸,y軸分別相交于M(4,0),N(0,3)兩點.已知拋物線開口向上,與⊙C交于N,H,P三點,P為拋物線的頂點,拋物線的對稱軸經(jīng)過點C且垂直x軸于點D.
(1)求線段CD的長及頂點P的坐標;
(2)求拋物線的函數(shù)表達式;
(3)設拋物線交x軸于A,B兩點,在拋物線上是否存在點Q,使得S四邊形OPMN=8S△QAB , 且△QAB∽△OBN成立?若存在,請求出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y= x2+bx+c經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)求拋物線的函數(shù)表達式;
(2)點D為直線AC上方拋物線上一動點;
①連接BC、CD,設直線BD交線段AC于點E,△CDE的面積為S1 , △BCE的面積為S2 , 求 的最大值;
②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81, ≈1.41, ≈1.73, ≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A>∠B.
(1)作邊AB的垂直平分線DE,與AB,BC分別相交于點D,E(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,連接AE,若∠B=50°,求∠AEC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com