【題目】如圖,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直線旋轉(zhuǎn)一周得到一個幾何體,則這個幾何體的側(cè)面積為(
A.60πcm2
B.65πcm2
C.120πcm2
D.130πcm2

【答案】B
【解析】解:∵在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°, ∴由勾股定理得AB=13,
∴圓錐的底面周長=10π,
∴旋轉(zhuǎn)體的側(cè)面積= ×10π×13=65π,
故選B.
【考點精析】根據(jù)題目的已知條件,利用點、線、面、體的認識和圓錐的相關(guān)計算的相關(guān)知識可以得到問題的答案,需要掌握點:線和線相交的地方是點,它是幾何圖形中最基本的圖形;線:面和面相交的地方是線,分為直線和曲線;面:包圍著體的是面,分為平面和曲面;體:幾何體也簡稱體;圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點且∠BOD=60°,過點D作⊙O的切線CD交AB的延長線于點C,E為的中點,連接DE,EB.

(1)求證:四邊形BCDE是平行四邊形;
(2)已知圖中陰影部分面積為6π,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣ x2+ x+2的圖象與x軸交于點A、B,與y軸交于點C,連接BC,過點A作AD∥BC交拋物線的對稱軸于點D.

(1)求點D的坐標;
(2)如圖2,點P是拋物線在第一象限內(nèi)的一點,作PQ⊥BC于Q,當PQ的長度最大時,在線段BC上找一點M(不與點B、點C重合),使PM+ BM的值最小,求點M的坐標及PM+ BM的最小值;

(3)拋物線的頂點為點E,平移拋物線,使拋物線的頂點E在直線AE上移動,點A,E平移后的對應(yīng)點分別為點A′、E′.在平面內(nèi)有一動點F,當以點A′、E′、B、F為頂點的四邊形為菱形時,求出點A′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線y= 的一部分,請根據(jù)圖中信息解答下列問題:
(1)求0到2小時期間y隨x的函數(shù)解析式;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚內(nèi)溫度不低于15℃的時間有多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,點E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“宏揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A﹣國學誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意愿,隨機調(diào)查了部分學生,結(jié)果統(tǒng)計如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為度,根據(jù)題中信息補全條形統(tǒng)計圖.
(2)學,F(xiàn)有800名學生,請根據(jù)圖中信息,估算全校學生希望參加活動A有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.圓內(nèi)接正六邊形的邊長與該圓的半徑相等
B.在平面直角坐標系中,不同的坐標可以表示同一點
C.一元二次方程ax2+bx+c=0(a≠0)一定有實數(shù)根
D.將△ABC繞A點按順時針方向旋轉(zhuǎn)60°得△ADE,則△ABC與△ADE不全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.

查看答案和解析>>

同步練習冊答案