【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線BECD于點(diǎn)E,∠ADC的平分線DFAB于點(diǎn)F

1)若AD4,AB6,求BF的長.

2)求證:四邊形DEBF是平行四邊形.

【答案】(1)2;(2)證明見解析.

【解析】

1)根據(jù)平行四邊形的性質(zhì)和角平分線的定義即可得到結(jié)論;

2)由在ABCD中,BEABC的平分線,DFADC的平分線,易證得ADFCBE,利用ASA可證ADF≌△CBE,繼而證得DEFB,根據(jù)DE∥BF,則可證得四邊形DEBF是平行四邊形,

解:(1)在平行四邊形ABCD中,

ABCD,

∴∠AFDCDF,

∵∠ADC的平分線DFAB于點(diǎn)F

∴∠ADFCDF

∴∠ADFAFD,

AFAD4,

AB6

;

2四邊形ABCD是平行四邊形,

ADCB,ABCD,AC,ADCABC

BEABC的平分線,DFADC的平分線

∴∠ADFADC,CBEABC

∴∠ADFCBE,

∴△ADF≌△CBEASA).

AFCE

ABAFCDCE

DEFB

DEBF

四邊形DEBF是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b與y=kbx,它們在同一坐標(biāo)系內(nèi)的圖象可能為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于 的左側(cè)),與軸交于點(diǎn),拋物線上的點(diǎn)的橫坐標(biāo)為3,過點(diǎn)作直線軸.

1)點(diǎn)為拋物線上的動(dòng)點(diǎn),且在直線的下方,點(diǎn),分別為軸,直線上的動(dòng)點(diǎn),且軸,當(dāng)面積最大時(shí),求的最小值;

2)過(1)中的點(diǎn),垂足為,且直線軸交于點(diǎn),把繞頂點(diǎn)旋轉(zhuǎn)45°,得到,再把沿直線平移至,在平面上是否存在點(diǎn),使得以,為頂點(diǎn)的四邊形為菱形?若存在直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤,取名為開心大轉(zhuǎn)盤,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母A,則收費(fèi)2元,若指針指向字母B,則獎(jiǎng)勵(lì)3元;若指針指向字母C,則獎(jiǎng)勵(lì)1元.一天,前來尋開心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:二次根式與分式運(yùn)算
(1)計(jì)算:( 2+( 0+(﹣1)1001+( ﹣3 )×tan30°
(2)先化簡,再求值: ﹣a2+b2),其中a=3﹣2 ,b=3 ﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O(shè)為圓心,OC為半徑作⊙O.AO交⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD= ,

(1)求 的值.
(2)設(shè)⊙O的半徑為3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD與正方形BEFG是以原點(diǎn)O為位似中心的位似圖形,且相似比為 ,點(diǎn)A,B,E在x軸上,若正方形BEFG的邊長為6,則點(diǎn)C的坐標(biāo)為( )

A.(2,2)
B.(3,1)
C.(3,2)
D.(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(1﹣2x,x﹣1)在第二象限,則x的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案