一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.根據(jù)圖中信息,解答下列問題:
(1)當(dāng)x=______時,兩車相遇;
(2)求線段AB所在直線的函數(shù)解析式;
(3)求甲乙兩地之間的距離.

【答案】分析:(1)相遇時兩車之間的距離為0,從而可得出答案;
(2)設(shè)解析式為y=kx+b,將點(1.5,70),(2,0)代入即可得出.
(3)求出點A的坐標(biāo),即可得出甲乙兩地之間的距離.
解答:解:(1)當(dāng)x=2時,兩車之間的距離為0,即兩車相遇;

(2)設(shè)線段AB所在直線的函數(shù)解析式為:y=kx+b,
將點(1.5,70),(2,0)代入可得:
解得:,
即線段AB所在直線的解析式為:y=-140x+280.

(3)線段AB所在直線的解析式為:y=-140x+280,
故可得點A的坐標(biāo)為(0,280),
即剛一開始兩車之間的距離為280km,即甲乙兩地之間的距離為280km.
點評:本題考查了一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是仔細(xì)審圖,注意點A及點B坐標(biāo)表示的實際意義,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.
精英家教網(wǎng)(1)根據(jù)圖中信息,求線段AB所在直線的函數(shù)解析式和甲乙兩地之間的距離;
(2)已知兩車相遇時快車比慢車多行駛40千米,若快車從甲地到達(dá)乙地所需時間為t時,求t的值;
(3)在(2)的條件下,若快車到達(dá)乙地后立刻返回甲地,慢車到達(dá)甲地后停止行駛,請你在圖中畫出快車從乙地返回到甲地過程中y關(guān)于x的函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線A-B-C-D-E表示:從兩車出發(fā)至快車到達(dá)乙地后立即返回到甲地的過程中y與x之間的函數(shù)關(guān)系.
(1)根據(jù)圖中信息,求線段AB所在直線的函數(shù)解析式和甲乙兩地之間的距離;
(2)已知兩車相遇時快車比慢車多行駛40千米,若快車從甲地到達(dá)乙地所需時間為t小時,求t的值;
(3)請你直接寫出D點的坐標(biāo)及直線DE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.根據(jù)圖中信息,解答下列問題:
(1)當(dāng)x=
2
2
時,兩車相遇;
(2)求線段AB所在直線的函數(shù)解析式;
(3)求甲乙兩地之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南通二模)一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)快車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.請根據(jù)圖象進行以下探究:
信息讀取
(1)甲、乙兩地之間的距離為
280
280
km;圖中點B的實際意義是
兩車相遇
兩車相遇
;
圖象理解:
(2)已知兩車相遇時快車比慢車多行駛40km,若快車從甲地到達(dá)乙地所需時間為t h,求t的值;
問題解決:
(3)若快車到達(dá)乙地后立刻返回甲地,慢車到達(dá)甲地后停止行駛,請你在圖中畫出快車從乙地返回到甲地過程中y關(guān)于x的函數(shù)的大致圖象(溫馨提示:請畫在答題卡相對應(yīng)的圖上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線ABC表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.
(1)根據(jù)圖中信息,求線段AB所在直線的函數(shù)解析式和甲乙兩地之間的距離;
(2)若兩車相遇時快車比慢車多行駛40千米,且快車從甲地到達(dá)乙地所需時間為t,求t的值.

查看答案和解析>>

同步練習(xí)冊答案