【題目】把兩個(gè)直角三角形如圖(1)放置,使∠ACB與∠DCE重合,ABDE相交于點(diǎn)O,其中∠DCE=90°,BAC=45°,AB=6cm,CE=5cm, CD=10cm.

(1)1中線段AO的長= cm;DO=cm

(2)如圖2,把△DCE繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α度(0°<α<90°)得△D1CE1,D1CAB相交于點(diǎn)F,若△BCE1恰好是以BC為底邊的等腰三角形,求線段AF的長.

【答案】1AO=cm;DO=cm; (2.

【解析】

試題(1)作,利用三角形相似來求出線段AO ,DO的長;

2)連接BE1,過點(diǎn)E1E1G⊥BCG, 過點(diǎn)FFH⊥BCH,根據(jù)三角形相似求出BF,即可得到答案.

試題解析:(1)如圖,過點(diǎn)A,

∵∠ACB∠DCE重合,∠DCE=90°,∠BAC=45°,AB=,

∴AC=BC=6,

∵∠DCE="90°,CE=5," CD=10

∴ED=, BE=BC-CE=6-5=1,AD=CD-AC=10-6=4,

∴△AFC∽△DEC

,AF=,

,EF=2,

∴BF=EF+BE=2+1=3,

∴△BOE∽△BAF

,AO=

,OE=

∴DO=DE-OE=

(2) 連接BE1,過點(diǎn)E1E1G⊥BCG, 過點(diǎn)FFH⊥BCH,

∵△DCE繞著點(diǎn)C 逆時(shí)針旋轉(zhuǎn)α

∴∠E1CG=α,

∵△BCE1恰好是以BC為底邊的等腰三角形,

∴E1G是線段BC的中垂線

∵E1C=5,BC=6

∴CG=BH=3,,

∵FH⊥BC,∠DCE=90°,∠BAC=45°,

∴BH=FH,BH=FH=x,

則:CH=6-x

△FHC△CG E1

∵∠E1CG +∠FCH=∠FCH +∠CFH=90°,

∴∠E1CG =∠CFH,

∵∠FHC=∠CG E1=90°,

∴△FHC∽△CG E1,

,即:,解得,

∴FH=,

∵∠FHB=90°,∠BAC=45°,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在   等級(jí);

(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校組織的游藝晚會(huì)上,擲飛標(biāo)游藝區(qū)游戲規(guī)則如下:如圖擲到A區(qū)和B區(qū)的得分不同,A區(qū)為小圓內(nèi)部分,B區(qū)為大圓內(nèi)小圓外的部分(擲中一次記一個(gè)點(diǎn)).現(xiàn)統(tǒng)計(jì)小華、小芳和小明擲中與得分情況如下:

1)求擲中A區(qū)、B區(qū)一次各得多少分?

2)依此方法計(jì)算小明的得分為多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(1)班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:

(Ⅰ)如圖5-1,先在平地上取一個(gè)可直接到達(dá)AB的點(diǎn)C,連接ACBC,并分別延長ACD,BCE,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長;

(Ⅱ)如圖5-2,先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過DBD的垂線DE,交AC的延長線于E,則測(cè)出DE的長即為AB的距離.

閱讀后1回答下列問題:

1)方案(Ⅰ)是否可行?說明理由.

2)方案(Ⅱ)是否可行?說明理由.

3)方案(Ⅱ)中作BFABEDBF的目的是 ;若僅滿足∠ABD=BDE90°, 方案(Ⅱ)是否成立? .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要在寬為22米的大道兩邊安裝路燈,路燈的燈臂CD2米,且與燈柱BC120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當(dāng)燈罩的軸線DO通過公路路面的中心線時(shí)照明效果最佳,求路燈的燈柱BC高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會(huì)大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明元旦前到文具超市用15元買了若干練習(xí)本,元旦這一天,該超市開展優(yōu)惠活動(dòng),同樣的練習(xí)本比元旦前便宜0.2元,小明又用20.7元錢買練習(xí)本,所買練習(xí)本的數(shù)量比上一次多50%,小明元旦前在該超市買了多少本練習(xí)本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且ABAE,延長ABDE的延長線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖像與性質(zhì)進(jìn)行了探究.下面是小慧的探究過程,請(qǐng)補(bǔ)充完整.

(l)函數(shù)的自變量的取值范圍是 ;

(2)列表,找出的幾組對(duì)應(yīng)值.

其中, ;

(3)在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖像;

(4)寫出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

同步練習(xí)冊(cè)答案