【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上的一動點,連接AC并延長交⊙O于D,過點D作直線交OB延長線于E,且DE=CE,已知OA=8.
(1)求證:ED是⊙O的切線;
(2)當(dāng)∠A=30°時,求CD的長.
【答案】(1)證明見解析;(2).
【解析】
(1)如圖連接OD.欲證明DE是切線,只要證明OD⊥DE即可;
(2)解直角三角形求出OC,只要證明CD=OC即可解決問題;
(1)證明:如圖連接OD.
∵OA=OD,∴∠A=∠ODA.
∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ACO=90°.
∵ED=EB,∴∠EDB=∠EBD=∠ACO,∴∠ODA+∠EDC=90°,∴OD⊥DE,∴DE是⊙O的切線.
(2)在Rt△AOC中,∵OA=8,∠A=30°,∴OC=OAtan30°=.
∵OA=OD,∴∠ODA=∠A=30°,∠DOA=120°,∠DOC=30°,∴∠DOC=∠ODC=30°,∴CD=OC=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t
(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了30分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有320米
其中正確的結(jié)論有( 。
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家體育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定價5元,乒乓球拍每副定價20元.現(xiàn)兩家商店都搞促銷活動,甲店每買一副球拍贈一盒乒乓球;乙店按九折優(yōu)惠.某班級需購球拍4副,乒乓球x盒(x≥4).
(1)若在甲店購買付款(元),在乙店購買付款(元),分別寫出與x的函數(shù)關(guān)系式;
(2)買30盒乒乓球時,在哪家商店購買合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)(x>0)的圖象經(jīng)過菱形對角線的交點A,且與邊BC交于點F,點A的坐標(biāo)為(4,2).
(1)求反比例函數(shù)的表達式;
(2)求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,中,、兩點分別是邊和的垂直平分線與的交點,連結(jié)和,且.求的度數(shù).
證明:∵、兩點分別是邊和的垂直平分線與的交點,
∴______________,.( )
∵,
∴在中,___________________(等量代換)
∴是____________三角形.
∴,
∵在中,,
∴____________.
又∵
∴__________+∠___________.
(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和)
∴____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點A,分別過正方形的頂點B、D作BF⊥a于點F,DE⊥a于點E,若DE=8,BF=5,則EF的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,使ΔABC≌ΔADC成立的條件是( )
A.AB=AD,∠B=∠DB.AB=AD,∠ACB=ACD
C.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com