【題目】解方程與不等式
(1)解方程:x2+3x﹣2=0;
(2)解不等式組: .
【答案】
(1)解:)x2+3x﹣2=0,
∵b2﹣4ac=32﹣4×1×(﹣2)=17,
∴x= ,
x1= ,x2=﹣ ;
(2)解:
∵解不等式①得:x≥4,
解不等式②得:x>5,
∴不等式組的解集為:x>5.
【解析】(1)求出b2﹣4ac的值,代入公式求出即可;(2)先求出兩個不等式的解集,再根據(jù)找不等式組解集的規(guī)律找出即可.
【考點精析】解答此題的關(guān)鍵在于理解一元一次不等式組的解法的相關(guān)知識,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是( )
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與應(yīng)用.試完成下列問題:
(1)如圖①,已知等腰Rt△ABC中,∠C=90°,點O為AB的中點,作∠POQ=90°,分別交AC、BC于點P、Q,連結(jié)PQ、CO,求證:AP2+BQ2=PQ2;
(2)如圖②,將等腰Rt△ABC改為任意直角三角形,點O仍為AB的中點,∠POQ=90°,試探索上述結(jié)論AP2+BQ2=PQ2是否仍成立;
(3)通過上述探究(可直接運用上述結(jié)論),試解決下面的問題:如圖③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,點O為AB的中點,過C、O兩點的圓分別交AC、BC于P、Q,連結(jié)PQ,求△PCQ面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8;④0<CE≤6.4.其中正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點M,連接MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.
(1)試直接寫出點D的坐標(biāo);
(2)已知點B與點D在經(jīng)過原點的拋物線上,點P在第一象限內(nèi)的該拋物線上移動,過點P作PQ⊥x軸于點Q,連接OP.
①若以O(shè)、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標(biāo);
②試問在拋物線的對稱軸上是否存在一點T,使得|TO﹣TB|的值最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】愛好思考的小茜在探究兩條直線的位置關(guān)系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(1)【特例探究】
如圖1,當(dāng)tan∠PAB=1,c=4 時,a= , b=;
如圖2,當(dāng)∠PAB=30°,c=2時,a= , b=;
(2)【歸納證明】
請你觀察(1)中的計算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論.
(3)【拓展證明】
如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的袋子中裝有4個球,它們除了上面分別標(biāo)有的號碼1、2、3、4不同外,其余均相同.將小球攪勻,并從袋中任意取出一球后放回;再將小球攪勻,并從袋中再任意取出一球.若把兩次號碼之和作為一個兩位數(shù)的十位上的數(shù)字,兩次號碼之差的絕對值作為這個兩位數(shù)的個位上的數(shù)字,請用“畫樹狀圖”或“列表”的方法求所組成的兩位數(shù)是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景: 如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡單應(yīng)用:
(1)在圖①中,若AC= ,BC=2 ,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長. 拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標(biāo)軸交于A、B、C三點,其中點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(﹣4,0).
(1)求該二次函數(shù)的表達(dá)式及點C的坐標(biāo);
(2)點D的坐標(biāo)為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com