在直角坐標(biāo)系中,拋物線y=-
1
2
x2+mx-n與x軸交于A、B兩點.與y軸交于C點.已知A、B兩點都在x軸負(fù)半軸上(A左B右),△AOC與△COB相似,且tan∠CBO=4tan∠BCO.
(1)求拋物線的解析式;
(2)若此拋物線的對稱軸與直線y=nx交于D.以D為圓心,作與x軸相切的圓,交y軸于M、N兩點.求劣弧MN所對的弓形面積;
(3)在y軸上是否存在一點F,使得FD+FA的值最小,若存在,求出△ABF的面積,若不存在,說明理由.
(1)當(dāng)x=0時,y=-n,
∴C(0,-n).
∵tan∠CBO=
OC
OB
,tan∠BCO=
OB
OC
,
OC
OB
=4
OB
OC

∴OC=2OB
∴B(-
n
2
,0)
∵△AOC△COB
∴OC2=OA•OB
∴A(-2n,0)
把A,B兩點的坐標(biāo)代入拋物線得:
-
1
2
n2
4
-m•
1
2
n-n=0
-
1
2
•4n2-2mn-n=0

解方程組得:
m=-
5
2
n=2

所以拋物線的解析式為:y=-
1
2
x2-
5
2
x-2;

(2)拋物線的對稱軸為:x=-
5
2

y=2x,
∴D(-
5
2
,-5),
如圖:連接DM,DN,過點D作DH⊥MN于H,
則:DM=5,DH=
5
2
,
∴∠MDH=60°,
∴∠MDN=120°
S弓形=S扇形MDN-S△MDN
=
1
3
π•25-
1
2
5
2
•5
3

=
25π
3
-
24
3
4


(3)點D關(guān)于y軸的對稱點E(
5
2
,-5)
點A(-4,0),
AE的解析式為:y=-
10
13
x-
40
13

∴F(0,-
40
13

S△ABF=
1
2
AB•OF=
1
2
•3•
40
13
=
60
13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸相交于A、B,點B的坐標(biāo)為(10,0),頂點M的坐標(biāo)為(4,8),點P從點M出發(fā),以每秒1個單位的速度沿線段MA向A點運動;點Q從點A出發(fā),以每秒2個單位的速度沿AB向B點運動,若P、Q同時出發(fā),當(dāng)其中的一點到達終點時,另一點也隨之停止運動,設(shè)運動時間為t秒鐘.
(1)求拋物線的解析式;
(2)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式,△APQ的面積是否有最大值?若有,請求出其最大值;若沒有,請說明理由;
(3)當(dāng)t為何值時,△APQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點,A(x1,0),B(x2,0)(x1<x2),與y軸交于點C,且AB=6.
(1)求拋物線與直線BC的解析式;
(2)在所給出的直角坐標(biāo)系中作出拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△OAB的斜邊OA在x軸的正半軸上,直角的頂點B在第一象限內(nèi),已知點A(10,0),△OAB的面積為20.
(1)求B點的坐標(biāo);
(2)求過O、B、A三點拋物線的解析式;
(3)判斷該拋物線的頂點P與△OAB的外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c圖象的對稱軸是直線x=2,且過點A(0,3).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象與x軸的交點B、C的坐標(biāo);
(3)如果某個一次函數(shù)圖象經(jīng)過坐標(biāo)原點O和該二次函數(shù)圖象的頂點M.問在這個一次函數(shù)圖象上是否存在點P,使得△PBC是直角三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有鋁合金窗框料8米,準(zhǔn)備用它做一個如圖所示的長方形窗架,一般來說,當(dāng)窗戶總面積最大時,窗戶的透光最好.那么,要使這個窗戶透光最好,窗架的寬應(yīng)為多少米此時窗戶的總面積是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,點D在BC上,DEAC,交AB與點E,點F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標(biāo)系.
(1)求此拋物線的解析式;
(2)如果限定矩形的長CD為9米,那么矩形的高DE不能超過多少米,才能使船通過拱橋;
(3)若設(shè)EF=a,請將矩形CDEF的面積S用含a的代數(shù)式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

取一張矩形的紙進行折疊,具體操作過程如下:
第一步:先把矩形ABCD對折,折痕為MN,如圖(1)所示;
第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應(yīng)點為B′,得Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.

探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點A落在DC邊上的點A′處,x軸垂直平分DA,直線EF的表達式為y=kx-k (k<0)
①問:EF與拋物線y=-
1
8
x2
有幾個公共點?
②當(dāng)EF與拋物線只有一個公共點時,設(shè)A′(x,y),求
x
y
的值.

查看答案和解析>>

同步練習(xí)冊答案