如圖,在△ABC中,AB=AC,點(diǎn)D在BC上,DEAC,交AB與點(diǎn)E,點(diǎn)F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
∵AB=AC,DC=DF
∴∠B=∠C=∠DFC
又∵DEAC
∴∠BDE=∠C
∴△BDE△FCD
DB
FC
=
BE
FD

3-x
y
=
4
x

y=
1
4
x(3-x)=-
1
4
x2+
3
4
x

自變量x的取值范圍0<x<3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,拋物線y=-
1
2
x2+mx-n與x軸交于A、B兩點(diǎn).與y軸交于C點(diǎn).已知A、B兩點(diǎn)都在x軸負(fù)半軸上(A左B右),△AOC與△COB相似,且tan∠CBO=4tan∠BCO.
(1)求拋物線的解析式;
(2)若此拋物線的對稱軸與直線y=nx交于D.以D為圓心,作與x軸相切的圓,交y軸于M、N兩點(diǎn).求劣弧MN所對的弓形面積;
(3)在y軸上是否存在一點(diǎn)F,使得FD+FA的值最小,若存在,求出△ABF的面積,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,直線L:y=-x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線G:y=ax2+bx+c與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對稱軸是直線x=2.
(1)該拋物線G的解析式為______;
(2)將直線L沿y軸向下平移______個單位長度,能使它與拋物線G只有一個公共點(diǎn);
(3)若點(diǎn)E在拋物線G的對稱軸上,點(diǎn)F在該拋物線上,且以點(diǎn)A、B、E、F為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)E與點(diǎn)F坐標(biāo)并直接寫出平行四邊形的周長.
(4)連接AC,得△ABC.若點(diǎn)Q在x軸上,且以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1所示,已知直線y=kx+m與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、C兩點(diǎn),點(diǎn)B是拋物線與x軸的另一個交點(diǎn),當(dāng)x=-
1
2
時,y取最大值
25
4

(1)求拋物線和直線的解析式;
(2)設(shè)點(diǎn)P是直線AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于點(diǎn)M、N,兩點(diǎn),問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.
②猜想當(dāng)∠MON>90°時,a的取值范圍.(不寫過程,直接寫結(jié)論)
(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)之間的距離為|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
(1)求拋物線的解析式;
(2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時,求此時點(diǎn)M的坐標(biāo);
(3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-x2+bx+c的圖象如圖所示,下列幾個結(jié)論:
①對稱軸為x=2;②當(dāng)y>0時,x<0或x>4;③函數(shù)解析式為y=-x(x-4);④當(dāng)x≤0時,y隨x的增大而增大.其中正確的結(jié)論有______(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:已知二次函數(shù)y=ax2+bx+c的圖象G和x軸有且只有一個交點(diǎn)A,與y軸的交點(diǎn)為B(0,4),且ac=b.
(1)求該二次函數(shù)的解析表達(dá)式;
(2)將一次函數(shù)y=-3x的圖象作適當(dāng)平移,使它經(jīng)過點(diǎn)A,記所得的圖象為L,圖象L與G的另一個交點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

企業(yè)的污水處理有兩種方式,一種是輸送到污水廠進(jìn)行集中處理,另一種是通過企業(yè)的自身設(shè)備進(jìn)行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時進(jìn)行.1至6月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關(guān)系如下表:
月份x(月)123456
輸送的污水量y1(噸)1200060004000300024002000
7至12月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關(guān)系式為y2=ax2+c(a≠0).其圖象如圖所示.1至6月,污水廠處理每噸污水的費(fèi)用:z1(元)與月份x之間滿足函數(shù)關(guān)系式:z1=
1
2
x
,該企業(yè)自身處理每噸污水的費(fèi)用:z2(元)與月份x之間滿足函數(shù)關(guān)系式:z2=
3
4
x-
1
12
x2
;7至12月,污水廠處理每噸污水的費(fèi)用均為2元,該企業(yè)自身處理每噸污水的費(fèi)用均為1.5元.
(1)請觀察題中的表格和圖象,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,分別直接寫出y1,y2與x之間的函數(shù)關(guān)系式;
(2)請你求出該企業(yè)去年哪個月用于污水處理的費(fèi)用W(元)最多,并求出這個最多費(fèi)用;
(3)今年以來,由于自建污水處理設(shè)備的全面運(yùn)行,該企業(yè)決定擴(kuò)大產(chǎn)能并將所有污水全部自身處理,估計擴(kuò)大產(chǎn)能后今年每月的污水量都將在去年每月的基礎(chǔ)上增加a%,同時每噸污水處理的費(fèi)用將在去年12月份的基礎(chǔ)上增加(a-30)%,為鼓勵節(jié)能降耗,減輕企業(yè)負(fù)擔(dān),財政對企業(yè)處理污水的費(fèi)用進(jìn)行50%的補(bǔ)助.若該企業(yè)每月的污水處理費(fèi)用為18000元,請計算出a的整數(shù)值.
(參考數(shù)據(jù):
231
≈15.2,
419
≈20.5,
809
≈28.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一個拋物線形的拱形隧道,隧道的最大高度為6m,跨度為8m,把它放在如圖所示的平面直角坐標(biāo)系中.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)若要在隧道壁上點(diǎn)P(如圖)安裝一盞照明燈,燈離地面高4.5m.求燈與點(diǎn)B的距離.

查看答案和解析>>

同步練習(xí)冊答案