【題目】已知:拋物線yx22m1x1m

1)當(dāng)m2時(shí),求該拋物線的對稱軸和頂點(diǎn)坐標(biāo);

2)設(shè)該拋物線與x軸交于Ax1,0)、Bx20),x10x2,與y軸交于點(diǎn)C,且滿足,求這個(gè)拋物線的解析式;

3)在(2)的條件下,是否存在著直線ykx+b與拋物線交于點(diǎn)PQ,使y軸平分△CPQ的面積?若存在,求出k,b應(yīng)滿足的條件;若不存在,請說明理由.

【答案】1)對稱軸直線為x1,頂點(diǎn)坐標(biāo)為(1,﹣4);(2yx22x3;(3)存在,當(dāng)k=﹣2b>﹣3時(shí)直線ykx+b與拋物線交于點(diǎn)P,Q使y軸平分△CPQ的面積.

【解析】

1)將m2代入拋物線解析式中,并且配方得出yx22x3=(x124,即可得出結(jié)論;

2)先表示出AO=﹣x1,OBx2COm+10,再用 ,建立方程化簡得出(m+1)(x1+x2)=﹣2x1x2,再根據(jù)根與系數(shù)的關(guān)系得出x1+x22m1),x1x2=﹣(1+m),即可得出結(jié)論;

3)設(shè)點(diǎn)P的橫坐標(biāo)為xP,點(diǎn)Q的橫坐標(biāo)為xQ,直線與y軸交于點(diǎn)E,利用面積相等得出|xP||xQ|,即xP=﹣xQ,再由,得出x2﹣(k+2x﹣(b+3)=0,進(jìn)而得出xP+xQk+20,即可得出結(jié)論.

1)當(dāng)m2時(shí),得出yx22x3=(x124

∴拋物線的對稱軸直線為x1,頂點(diǎn)坐標(biāo)為(1,﹣4);

2)∵x10x2,

AO=﹣x1,OBx2,

又∵a10,

COm+10

m>﹣1,

,

COOBAO)=2AOOB

即(m+1)(x1+x2)=﹣2x1x2

對于拋物線yx22m1x1m,

y0,則0x22m1x1m,

x1+x22m1),x1x2=﹣(1+m),

∴(m+12m1)=21+m),

解得m=﹣1(舍去),m2

∴二次函數(shù)的解析式為yx22x3

3)存在著直線ykx+b與拋物線交于點(diǎn)P、Q,使y軸平分CPQ的面積,

設(shè)點(diǎn)P的橫坐標(biāo)為xP,點(diǎn)Q的橫坐標(biāo)為xQ,直線與y軸交于點(diǎn)E,

SPCESQCECE|xP|CE|xQ|,

|xP||xQ|

y軸平分CPQ的面積,

∴點(diǎn)P、Qy軸異側(cè),

xP=﹣xQ,

x2﹣(k+2x﹣(b+3)=0

xP,xQx2﹣(k+2x﹣(b+3)=0的兩根,

xP+xQk+20,

k=﹣2,

又∵直線與拋物線有兩個(gè)交點(diǎn),

b+30,即b>﹣3,

∴當(dāng)k=﹣2b>﹣3時(shí)直線ykx+b與拋物線交于點(diǎn)PQ使y軸平分CPQ的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與x軸、y軸分別交于AB兩點(diǎn),與反比例函數(shù)y的圖象分別交于C,D兩點(diǎn),點(diǎn)C24),點(diǎn)B是線段AC的中點(diǎn).

1)求一次函數(shù)yk1x+b與反比例函數(shù)y的解析式;

2)求△COD的面積;

3)直接寫出當(dāng)x取什么值時(shí),k1x+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有且僅有一組對角相等的凸四邊形叫做準(zhǔn)平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準(zhǔn)平行四邊形.

1)如圖①,上的四個(gè)點(diǎn),,延長,使.求證:四邊形是準(zhǔn)平行四邊形;

2)如圖②,準(zhǔn)平行四邊形內(nèi)接于,若的半徑為,求的長;

3)如圖③,在中,,若四邊形是準(zhǔn)平行四邊形,且,請直接寫出長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)yax2+bx+a0b0)的圖象與x軸只有一個(gè)公共點(diǎn)A

1)當(dāng)a時(shí),求點(diǎn)A的坐標(biāo);

2)求A點(diǎn)的坐標(biāo)(只含b的代數(shù)式來表示);

3)過點(diǎn)A的直線yx+k與二次函數(shù)的圖象相交于另一點(diǎn)B,當(dāng)b≥1時(shí),求點(diǎn)B的橫坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,勾股定理反映了直角三角形三條邊的關(guān)系: a2+b2=c2 a2, b2, c2又可以看成是以ab, c為邊長的正方形的面積.如圖,在RtABC中,∠ACB=90°,BC=a AC=b,OAB的中點(diǎn).分別以AC,BC 為邊向ABC外作正方形ACFG,BCED,連結(jié)OF, EF OE,則OEF的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC是△ABCAB邊的中線,∠ABC36°,點(diǎn)DOC上一點(diǎn),如果ODkOC,過DDECA交于BA點(diǎn)E,點(diǎn)MDE的中點(diǎn),將△ODE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α度(其中0°<α180°)后,射線OM交直線BC于點(diǎn)N

1)如果△ABC的面積為26,求△ODE的面積(用k的代數(shù)式表示);

2)當(dāng)NB不重合時(shí),請?zhí)骄俊?/span>ONB的度數(shù)y與旋轉(zhuǎn)角α的度數(shù)之間的函數(shù)關(guān)系式;

3)寫出當(dāng)△ONB為等腰三角形時(shí),旋轉(zhuǎn)角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2 x+ca≠0)的圖象與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C0,﹣2),已知B點(diǎn)坐標(biāo)為(4,0).

1)求拋物線的解析式;

2)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),記點(diǎn)M到線段BC的距離為d,當(dāng)d取最大值時(shí),求出此時(shí)M點(diǎn)的坐標(biāo);

3)若點(diǎn)P是拋物線上一點(diǎn),點(diǎn)E是直線y=x上的動(dòng)點(diǎn),是否存在點(diǎn)P、E,使以點(diǎn)A,點(diǎn)B,點(diǎn)P,點(diǎn)E為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)E坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案