20、下表給出了代數(shù)式x2+bx+c與x的一些對(duì)應(yīng)值:
x 0 1 2 3 4
x2+bx+c 3 -1 3
(1)求b,c的值;
(2)設(shè)y=x2+bx+c,當(dāng)x取何值時(shí),y隨x的增大而增大?
(3)函數(shù)y=x2+bx+c的圖象經(jīng)過怎樣平移可得到函數(shù)y=x2的圖象?
分析:(1)當(dāng)x=0代數(shù)式x2+bx+c為3可求出c,當(dāng)x=2代數(shù)式x2+bx+c的值為-1可計(jì)算出b;
(2)把y=x2-4x+3配成頂點(diǎn)式y(tǒng)=(x-2)2-1,然后根據(jù)二次函數(shù)的性質(zhì)回答即可;
(3)實(shí)際上是把頂點(diǎn)從(2,-1)移到原點(diǎn).
解答:解:(1)根據(jù)題意得,c=3,4+2b+c=-1,解得b=-4,
∴b,c的值分別為-4,3.
(2)y=x2-4x+3=(x-2)2-1,
∴拋物線的對(duì)稱軸為直線x=2,
∵a=1>0,
∴當(dāng)x>2時(shí),y隨x的增大而增大;
(3)函數(shù)y=x2+bx+c的圖象先向左平移2個(gè)單位,再向上平移1個(gè)單位可得到函數(shù)y=x2的圖象.
點(diǎn)評(píng):本題考查了利用待定系數(shù)法求二次函數(shù)的解析式;也考查了二次函數(shù)的頂點(diǎn)式及其性質(zhì)和二次函數(shù)圖象變換的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對(duì)應(yīng)值:
     x  …  0  1  2
 x2+bx+c  …  3   -1    3
(1)請(qǐng)?jiān)诒韮?nèi)的空格中填入適當(dāng)?shù)臄?shù);
(2)設(shè)y=x2+bx+c,則當(dāng)x取何值時(shí),y>0;
(3)請(qǐng)說明經(jīng)過怎樣平移函數(shù)y=x2+bx+c的圖象得到函數(shù)y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對(duì)應(yīng)值:
x -1 0 1 2 3 4
x2+bx+c 3 -1 3
(1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格空白處的對(duì)應(yīng)值;
(2)設(shè)y=x2+bx+c的圖象與x軸的交點(diǎn)為A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C,P為線段AB上一動(dòng)點(diǎn),過P點(diǎn)作PE∥AC交BC于E,連接PC,當(dāng)△PEC的面積最大時(shí),求P點(diǎn)的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對(duì)應(yīng)值:
x -1 0 1 2 3 4
X2+bx+c   3   -1   3
(1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格中空白處的對(duì)應(yīng)值;
(2)代數(shù)式x2+bx+c是否有最小值?如果有,求出最小值;如果沒有,請(qǐng)說明理由;
(3)設(shè)y=x2+bx+c的圖象與x軸的交點(diǎn)為A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C,P點(diǎn)為線段AB上一動(dòng)點(diǎn),過P點(diǎn)作PE∥AC交BC于E,連接PC,當(dāng)△PEC的面積最大時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下表給出了代數(shù)式x2+bx+c與x的一些對(duì)應(yīng)值:
x 0 1 2 3 4
x2+bx+c 3 -1 3
函數(shù)y=x2的圖象可以通過平移得到函數(shù)y=x2+bx+c的圖象.請(qǐng)寫出一種正確的平移
 

查看答案和解析>>

同步練習(xí)冊(cè)答案