【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),ABBC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°,cos37°,tan37°.計(jì)算結(jié)果保留根號(hào))

【答案】3+3.5

【解析】

試題分析:延長(zhǎng)ED交BC延長(zhǎng)線于點(diǎn)F,則CFD=90°,RtCDF中求得CF=CDcosDCF=2、DF=CD=2,作EGAB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtanAEG=4tan37°可得答案.

試題解析:如圖,延長(zhǎng)ED交BC延長(zhǎng)線于點(diǎn)F,則CFD=90°,

tanDCF=i==

∴∠DCF=30°,

CD=4,

DF=CD=2,CF=CDcosDCF=4×=2,

BF=BC+CF=2+2=4,

過(guò)點(diǎn)E作EGAB于點(diǎn)G,

則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,

∵∠AED=37°,

AG=GEtanAEG=4tan37°,

則AB=AG+BG=4tan37°+3.5=3+3.5,

故旗桿AB的高度為(3+3.5)米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線EF,CD相交于點(diǎn)0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);

(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)

(3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷售60箱.市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價(jià)x(x為正整數(shù)),每月的銷量為y箱.

1)寫出yx中間的函數(shù)關(guān)系式和自變量的取值范圍;

2)超市如何定價(jià),才能使每月銷售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD四個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,2),B(4,2),C(4, ),D(1, ).

(1)求這個(gè)長(zhǎng)方形的面積;

(2)將這個(gè)長(zhǎng)方形向下平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,得到長(zhǎng)方形A′B′C′D′,求長(zhǎng)方形A′B′C′D′四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,3)、B(-2,3

1)描出A、B兩點(diǎn)的位置,并連結(jié)ABAO、BO

2AOB的面積是__________。

AOB向右平移4個(gè)單位,再向上平移2個(gè)單位,畫出平移后的ABC,并寫出各點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在ABC中,∠A=60°,C=80°,則∠B=( 。

A. 60° B. 30° C. 20° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,F(xiàn)G∥BC,F(xiàn)H∥AC,下列結(jié)論:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正確的結(jié)論有 . (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣a﹣b(a<0,a、b為常數(shù))與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),直線AB的函數(shù)關(guān)系式為y=x+

(1)求該拋物線的函數(shù)關(guān)系式與C點(diǎn)坐標(biāo);

(2)已知點(diǎn)M(m,0)是線段OA上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點(diǎn),當(dāng)m為何值時(shí),△BDE恰好是以DE為底邊的等腰三角形?

(3)在(2)問(wèn)條件下,當(dāng)△BDE恰好是以DE為底邊的等腰三角形時(shí),動(dòng)點(diǎn)M相應(yīng)位置記為點(diǎn)M′,將OM′繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在0°到90°之間);

i:探究:線段OB上是否存在定點(diǎn)P(P不與O、B重合),無(wú)論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

ii:試求出此旋轉(zhuǎn)過(guò)程中,(NA+NB)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離OD=OE,且OB=OC.
(1)如圖,若點(diǎn)O在BC上,求證:AB=AC;

(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;

(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫圖表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案