【題目】如圖,在△ABC中,∠ACB=90°.
(1)作出經(jīng)過(guò)點(diǎn)B,圓心O在斜邊AB上且與邊AC相切于點(diǎn)E的⊙O(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)
(2)設(shè)(1)中所作的⊙O與邊AB交于異于點(diǎn)B的另外一點(diǎn)D,若⊙O的直徑為5,BC=4;求DE的長(zhǎng).(如果用尺規(guī)作圖畫(huà)不出圖形,可畫(huà)出草圖完成(2)問(wèn))
【答案】(1)見(jiàn)解析(2)
【解析】
(1)作△ABC的角平分線交AC于E,作EO⊥AC交AB于點(diǎn)O,以O為圓心,OB為半徑畫(huà)圓即可解決問(wèn)題;
(2)作ON⊥BC于H首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解決問(wèn)題;
(1)⊙O如圖所示;
(2)作OH⊥BC于H.
∵AC是⊙O的切線,
∴OE⊥AC,
∴∠C=∠CEO=∠OHC=90°,
∴四邊形ECHO是矩形,
∴OE=CH=,BH=BC﹣CH=,
在Rt△OBH中,OH==2,
∴EC=OH=2,BE==2,
∵∠EBC=∠EBD,∠BED=∠C=90°,
∴△BCE∽△BED,
∴=,
∴=,
∴DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無(wú)法確定)(直接填寫(xiě)結(jié)果)
(2)AE,BF相交于點(diǎn)O,若四邊形ABEF的周長(zhǎng)為40,BF=10,則AE的長(zhǎng)為________,∠ABC=________°.(直接填寫(xiě)結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象與軸、軸分別交于、兩點(diǎn),是坐標(biāo)原點(diǎn).
(1)求交點(diǎn)、的坐標(biāo),并畫(huà)出該一次函數(shù)的圖象;
(2)求的面積;
(3)根據(jù)圖象直接寫(xiě)出:當(dāng)時(shí),的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩車分別以各自的速度勻速?gòu)?/span>地駛向地,甲車比乙車早出發(fā),并且甲車途中休息了,如圖是甲、乙兩車行駛的路程與時(shí)間的函數(shù)圖象.
(1)求圖中的值及、兩地的距離;
(2)求出甲車行駛路程與時(shí)間的函數(shù)解析式,并寫(xiě)出相應(yīng)的的取值范圍;
(3)小明說(shuō):乙車行駛路程與時(shí)間的函數(shù)解析式為.問(wèn):①小明的說(shuō)法對(duì)嗎?簡(jiǎn)要說(shuō)明理由;②當(dāng)乙車行駛多長(zhǎng)時(shí)間時(shí),兩車恰好相距?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對(duì)稱軸為x=2,與x軸的一個(gè)交點(diǎn)是(﹣1,0).下列結(jié)論:
①ac<0;②4a﹣2b+c>0;③拋物線與x軸的另一個(gè)交點(diǎn)是(4,0);
④點(diǎn)(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.
(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC⊥BC,垂足為C,AC=4,BC=3,將線段AC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到線段AD,連接DC,DB.
(1)求線段CD的長(zhǎng);
(2)求線段DB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是射線y=(x≥0)上一點(diǎn),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過(guò)點(diǎn)A的雙曲線y=交CD邊于點(diǎn)E,則的值為( 。
A.B.C.D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com