【題目】如圖,在△ABC中,∠ACB=90°.

(1)作出經(jīng)過(guò)點(diǎn)B,圓心O在斜邊AB上且與邊AC相切于點(diǎn)E的⊙O(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)

(2)設(shè)(1)中所作的⊙O與邊AB交于異于點(diǎn)B的另外一點(diǎn)D,若⊙O的直徑為5,BC=4;求DE的長(zhǎng).(如果用尺規(guī)作圖畫(huà)不出圖形,可畫(huà)出草圖完成(2)問(wèn))

【答案】(1)見(jiàn)解析(2)

【解析】

(1)作△ABC的角平分線交ACE,作EOACAB于點(diǎn)O,以O為圓心,OB為半徑畫(huà)圓即可解決問(wèn)題;
(2)ONBCH首先求出OH、EC、BE,利用△BCE∽BED,可得=,解決問(wèn)題;

(1)⊙O如圖所示;

(2)作OHBC于H.

AC是O的切線,

∴OE⊥AC,

∴∠C=∠CEO=∠OHC=90°,

四邊形ECHO是矩形,

∴OE=CH=,BH=BC﹣CH=

在RtOBH中,OH==2,

∴EC=OH=2,BE==2,

∵∠EBC=∠EBD,∠BED=∠C=90°,

∴△BCE∽△BED,

=,

=,

∴DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)BF為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無(wú)法確定)(直接填寫(xiě)結(jié)果)

2AE,BF相交于點(diǎn)O,若四邊形ABEF的周長(zhǎng)為40BF=10,則AE的長(zhǎng)為________∠ABC=________°.(直接填寫(xiě)結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)的圖象與軸、軸分別交于兩點(diǎn),是坐標(biāo)原點(diǎn).

1)求交點(diǎn)、的坐標(biāo),并畫(huà)出該一次函數(shù)的圖象;

2)求的面積;

3)根據(jù)圖象直接寫(xiě)出:當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩車分別以各自的速度勻速?gòu)?/span>地駛向地,甲車比乙車早出發(fā),并且甲車途中休息了,如圖是甲、乙兩車行駛的路程與時(shí)間的函數(shù)圖象.

1)求圖中的值及、兩地的距離;

2)求出甲車行駛路程與時(shí)間的函數(shù)解析式,并寫(xiě)出相應(yīng)的的取值范圍;

3)小明說(shuō):乙車行駛路程與時(shí)間的函數(shù)解析式為.問(wèn):①小明的說(shuō)法對(duì)嗎?簡(jiǎn)要說(shuō)明理由;②當(dāng)乙車行駛多長(zhǎng)時(shí)間時(shí),兩車恰好相距?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對(duì)稱軸為x=2,與x軸的一個(gè)交點(diǎn)是(﹣1,0).下列結(jié)論:

①ac<0;②4a﹣2b+c>0;③拋物線與x軸的另一個(gè)交點(diǎn)是(4,0);

④點(diǎn)(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.其中正確的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ACBC,垂足為CAC=4,BC=3,將線段AC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到線段AD,連接DC,DB

(1)求線段CD的長(zhǎng);

(2)求線段DB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是射線yx≥0)上一點(diǎn),過(guò)點(diǎn)AABx軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過(guò)點(diǎn)A的雙曲線yCD邊于點(diǎn)E,則的值為( 。

A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案