【題目】如圖,正方形ABCD中,內(nèi)部有6個全等的正方形,小正方形的頂點E、F、G、H分別在邊AD、AB、BC、CD上,則tan∠DEH=( )
A. B. C. D.
【答案】A
【解析】
設(shè)大正方形的邊長為25,如圖,過點G作GP⊥AD,垂足為P,可以得到△BGF∽△PGE,再根據(jù)相似三角形對應(yīng)邊成比例的性質(zhì)列式求解即可得到DE和BG,根據(jù)勾股定理可求EG的長,進而求出每個小正方形的邊長,進而求出tan∠DEH的值.
如圖所示:
∵正方形ABCD邊長為25,
∴∠A=∠B=90°,AB=25,
過點G作GP⊥AD,垂足為P,則∠4=∠5=90°,
∴四邊形APGB是矩形,
∴∠2+∠3=90°,PG=AB=25,
∵六個大小完全一樣的小正方形如圖放置在大正方形中,
∴∠1+∠2=90°,
∴∠1=∠FGB,
∴△BGF∽△PGE,
∴,
∴,
∴GB=5,
∴AP=5,
同理DE=5,
∴EP=15,
在Rt△EPG中,EG=,
∴EH=,
在Rt△DEH中,DH=,
∴tan∠DEH=.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,裕安中學(xué)體育訓(xùn)練中,一實心球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)刻畫,斜坡可以用一次函數(shù)刻畫,實心球的落點A的坐標(biāo)是().
(1)求二次函數(shù)解析式和二次函數(shù)圖象的最高點P的坐標(biāo);
(2)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤,準(zhǔn)備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰梯形ABCD中,AB∥DC,AD=BC=CD,點E為AB上一點,連結(jié)CE,請?zhí)砑右粋你認為合適的條件 ,使四邊形AECD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不能構(gòu)成三角形的三條整數(shù)長度的線段的長度和的最小值為1+1+2=4;若四條整數(shù)長度的線段中,任意三條不能構(gòu)成三角形,則該四條線段的長度和的最小值為1+1+2+3=7;……,依此規(guī)律,若八條整數(shù)長度的線段中,任意三條不能構(gòu)成三角形,則該八條線段的長度和的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,是鈍角,讓點C在射線BD上向右移動,則( )
A.將先變成直角三角形,然后再變成銳角三角形,而不會再是鈍角三角形
B.將變成銳角三角形,而不會再是鈍角三角形
C.將先變成直角三角形,然后再變成銳角三角形,接著又由銳角三角形變?yōu)殁g角三角形
D.先由鈍角三角形變?yōu)橹苯侨切,再變(yōu)殇J角三角形,接著又變?yōu)橹苯侨切,角形然后再次變(yōu)殁g角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx(m為常數(shù),且m≠0)與雙曲線y= (k為常數(shù),且k≠0)相交于A(﹣2,6),B兩點,過點B作BC⊥x軸于點C,連接AC,則△ABC的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,將△ABC繞點B按逆時針方向旋轉(zhuǎn)30°后得到△A1BC1,則陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=)
求把手端點A到BD的距離;
求CH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com