【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=

求把手端點A到BD的距離;

求CH的長.

【答案】(1)12(2)10

【解析】分析:(1)、過點A作于點N,過點M作于點Q,根據(jù)Rt△AMQ中α的三角函數(shù)得出得出AN的長度;(2)、根據(jù)△ANB和△AGC相似得出DN的長度,然后求出BN的長度,最后求出GC的長度,從而得出答案.

詳解:(1)、過點A作于點N,過點M作于點Q.

中,. ∴,∴,∴.

(2)、根據(jù)題意:.∴. ∴. ∵

. ∴. ∴. ∴.

答:的長度是10cm .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的倍,則稱這樣的方程為倍根方程.以下關(guān)于倍根方程的說法,正確的是______.(寫出所有正確說法的序號)

①方程是倍根方程;

②若方程是倍根方程,則;

③若點在反比例函數(shù)的圖象上,則關(guān)于的方程是倍根方程;

④若方程是倍根方程,且相異兩點,都在拋物線上,則方程的一個根是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題:

已知平面內(nèi)兩點P1(x1,y1),P2(x2,y2),其兩點間的距離。例如:已知P(3,1),Q(1,-2),則這兩點間的距離.特別地,如果兩點M(x1y1),N(x2,y2),所在的直線與坐標(biāo)軸重合或平行于坐標(biāo)軸或者垂直于坐標(biāo)軸,那么這兩點間的距離公式可簡化為。

(1)已知A(2,3),B(-1-2),則AB兩點間的距離為_________;

(2)已知M,N在平行于y軸的直線上,點M的縱坐標(biāo)為-2,點N的縱坐標(biāo)為3,則M,N兩點間的距離為_________

(3)在平面直角坐標(biāo)系中,已知A(0,4)B(4,2),在x軸上找點P,使PA+PB的長度最短,求出點P的坐標(biāo)及PA+PB的最短長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖O的直徑AC與弦BD相交于點F,EDB延長線上的一點,EAB=ADB.

(1)求證:EA是⊙O的切線;

(2)若點BEF的中點,AB=,CB=,AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD內(nèi)找一點O,使它到四邊形四個頂點的距離之和OA+OB+OC+OD最小,正確的作法是連接AC、BD交于點O,則點O就是要找的點,請你用所學(xué)過的數(shù)學(xué)知識解釋這一道理__________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點E、F、G、H分別在菱形ABCD的各邊上,且AE=AH=CF=CG.

(1)求證:四邊形EFGH是矩形;

(2)若AB=6,∠A=60°.

①設(shè)BE=x,四邊形EFGH的面積為S,求S與x之間的函數(shù)表達(dá)式;

②x為何值時,四邊形EFGH的面積S最大?并求S的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿BD翻折,點C落在P點處,連接AP.若∠ABP=26°,則∠APB=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,,平分,平分,求的度數(shù).

2)如果(1)中,其他條件不變,求的度數(shù).

3)如果(1)中其他條件不變,則的度數(shù)為 .(直接寫出結(jié)果)

4)從(1)、(2)、(3)的結(jié)果能看出的規(guī)律是:有什么關(guān)系,與哪個角的大小無關(guān)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB,垂足為H,連結(jié)AC,過上一點EEGACCD的延長線于點G,連結(jié)AECD于點F,且EG=FG,連結(jié)CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是⊙O的切線;

(3)延長ABGE的延長線于點M,若tanG=,AH=3,求EM的值.

查看答案和解析>>

同步練習(xí)冊答案