已知拋物線y=a(x﹣m)2+n與y軸交于點A,它的頂點為點B,點A、B關(guān)于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x﹣2)2+1的伴隨直線的表達式.

(2)如圖2,若拋物線y=a(x﹣m)2+n(m>0)的伴隨直線是y=x﹣3,伴隨四邊形的面積為12,求此拋物線的表達式.

(3)如圖3,若拋物線y=a(x﹣m)2+n的伴隨直線是y=﹣2x+b(b>0),且伴隨四邊形ABCD是矩形.用含b的代數(shù)式表示m、n的值.

 

【答案】

(1)拋物線y=(x﹣2)2+1的伴隨直線的表達式為 

(2)拋物線的表達式為

(3), .                           

【解析】

試題分析:(1)由題意可知:A(0,5),B(2,1),                     

設(shè)伴隨直線AB的表達式為,

解得

∴拋物線y=(x﹣2)2+1的伴隨直線的表達式為.      

(2)令,得,∴A(0,-3),

由題意可知:頂點B(m,n)在伴隨直線y=x﹣3上,

∴n=m-3,

∴B(m,m-3),                                         

∵點A、B關(guān)于原點O的對稱點分別為C、D,

∴C(0,3) ,D(-m,-m+3),

過點B作軸于點E.

∵ m>0,

,

∵伴隨四邊形ABCD的面積為12,

,

,                                            

∴B(2,-1),

∴ 

把A(0,-3)代入中,

得:

∴拋物線的表達式為.                 

(3)∴伴隨直線AB;y=﹣2x+b(b>0)與x軸、y軸分別交于點F (,0) ,A(0,b),

∴C(0,-b)

∵伴隨四邊形ABCD是矩形,

∴頂點B(m,n)在y軸右側(cè)的直線y=﹣2x+b上,

∠ABC=90º,

∴B(m,-2m+b),

過點B作軸于點E.

∴E(0,-2m+b),

∴tan=tan,或證△ABE∽△BCE     

,

,                                       

.                           

考點:一次函數(shù),二次函數(shù),矩形

點評:本題考查一次函數(shù),二次函數(shù),矩形,解答本題的關(guān)鍵是用待定系數(shù)法求一次函數(shù),二次函數(shù)的解析式子,熟悉矩形的性質(zhì),本題難度較大

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸的精英家教網(wǎng)正半軸交于點C.如果x1、x2是方程x2-x-6=0的兩個根(x1<x2),且△ABC的面積為
152

(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作直線y=m(m為常數(shù)),與直線BC交于點Q,則在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為y=-
140
x2+10,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E、F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF(精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2(a>0)上有A、B兩點,它們的橫坐標分別為-1,2.如果△AOB(O是坐標原點)是直角三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點A(1,0)、B(2,-3)、C(0,4)三點.
(1)求此拋物線的解析式;
(2)如果點D在這條拋物線上,點D關(guān)于這條拋物線對稱軸的對稱點是點C,求點D的坐標.

查看答案和解析>>

同步練習(xí)冊答案