【題目】如圖,在平面直角坐標系中有點A(-4,0)、B(0,3)、P(a,-a)三點,線段CDAB關于點P中心對稱,其中A、B的對應點分別為C、D

(1) 當a=-4

① 在圖中畫出線段CD,保留作圖痕跡

② 線段CD向下平移 個單位時,四邊形ABCD為菱形

(2) 當a=___________時,四邊形ABCD為正方形

【答案】1)①見解析;②2;(2.

【解析】

1)①分別作出A、B關于點P的對稱點CD即可;

②判斷出平移前后點C的坐標即可解決問題;

2)當時,四邊形ABCD是正方形,由此構建方程即可解決問題.

解:①線段CD如圖所示;

②∵線段CDAB關于點P中心對稱,∴四邊形ABCD是平行四邊形,

AOB中,由勾股定理,得

∴當AB=BC=5時,四邊形ABCD是菱形,此時C(-4,6),原來點C坐標為(-4,8),

∴線段CD向下平移2個單位時,四邊形ABCD為菱形;

故答案為2;

2)∵四邊形ABCD是平行四邊形,AB=5,

∴當時,四邊形ABCD是正方形,

,

解得,(不合題意,舍去).

∴當時,四邊形ABCD為正方形.

故答案為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在下面的網(wǎng)格中,每個小正方形的邊長均為1,△ABC的三個頂點都是網(wǎng)格線的交點,已知B,C兩點的坐標分別為(﹣3,0),(﹣1,﹣1).

1)請在圖中畫出平面直角坐標系,并直接寫出點A的坐標.

2)將△ABC繞著坐標原點順時針旋轉90°,畫出旋轉后的△AB'C′.

3)接寫出在上述旋轉過程中,點A所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,秋千鏈子的長度為3 m,靜止時的秋千踏板(大小忽略不計)距地面0.5 m.秋千向兩邊擺動時,若最大擺角(擺角指秋千鏈子與鉛垂線的夾角)約為60°,則秋千踏板與地面的最大距離約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD延長線上的一點,連接PA,過點PPEPABC的延長線于點E,過點EEFBP于點F,則下列結論中:PAPECEPD;BFPDBD;SPEFSADP正確的是___(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點B,與y軸交于點C,拋物線y=﹣x2+bx+c經(jīng)過B,C兩點,與x軸另一交點為A.點P以每秒個單位長度的速度在線段BC上由點B向點C運動(點P不與點B和點C重合),設運動時間為t秒,過點Px軸垂線交x軸于點E,交拋物線于點M

1)求拋物線的解析式;

2)如圖,過點Py軸垂線交y軸于點N,連接MNBC于點Q,當時,求t的值;

3)如圖,連接AMBC于點D,當△PDM是等腰三角形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD//BC,對角線AC、BD相交于點O ,若,等于()

A. 16B. 13C. 14D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB=90°,AC=6cmBC=8cm,點PA出發(fā)沿ACC點以1厘米/秒的速度勻速移動;點QC出發(fā)沿CBB點以2厘米/秒的 速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒.

1)當t= 時,PQAB

2)當t為何值時,PCQ的面積等于5cm2?

3)在P、Q運動過程中,在某一時刻,若將PQC翻折,得到EPQ,如圖2,PEAB能否垂直?若能,求出相應的t值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,M的半徑為2,圓心M的坐標為(3,4),點PM上的任意一點,PAPB,且PA、PBx軸分別交于A、B兩點,若點A、點B關于原點O對稱,則AB的最小值為( 。

A. 3B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=4,若將△ABC繞點B順時針旋轉60°,點A的對應點為點A′,點C的對應點為點C′,點DA′B的中點,連接AD.則點A的運動路徑與線段AD、AD圍成的陰影部分面積是______.

查看答案和解析>>

同步練習冊答案