【題目】如圖,一次函數(shù)y1=kx+b與二次函數(shù)y2=ax2的圖象交于A(﹣1,n),B(2,4)兩點.
(1)利用圖中條件,求兩個函數(shù)的解析式;
(2)根據圖象直接寫出使y1<y2的x的取值范圍.
【答案】(1)y2=x2,y1=x+2;(2)當x<﹣1或x>2時,y1<y2.
【解析】
(1)把B坐標代入二次函數(shù)解析式即可求得二次函數(shù)解析式,把A橫坐標代入二次函數(shù)解析式即可求得點A坐標;把A,B兩點坐標代入一次函數(shù)解析式即可求得一次函數(shù)的解析式;
(2)觀察一次函數(shù)的圖像在二次函數(shù)圖像下方時x的取值.
解:(1)由圖象可知:B(2,4)在二次函數(shù)y2=ax2上,
∴4=a×22,
∴a=1,
∴二次函數(shù)的解析式為:y2=x2,
又A(﹣1,n)在二次函數(shù)y2=x2上,
∴n=(﹣1)2,
∴n=1,
則A(﹣1,1),
又∵A、B兩點在一次函數(shù)y1=kx+b上,
∴
解得:
∴一次函數(shù)的解析式為:y1=x+2,
(2)根據圖象可知:當x<﹣1或x>2時,y1<y2.
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖是邊長為10的等邊△ABC.
(1)作圖:在三角形ABC中找一點P,連接PA、PB、PC,使△PAB、△PBC、△PAC面積相等.(不寫作法,保留痕跡.)
(2)求點P到三邊的距離和PA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在菱形ABCD中,O是對角線BD上的一動點.
(1)如圖甲,P為線段BC上一點,連接PO并延長交AD于點Q,當O是BD的中點時,求證:;
(2)如圖乙,連接AO并延長,與DC交于點R,與BC的延長線交于點若,,,求AS和OR的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分5分)如圖,小明在大樓30米高
(即PH=30米)的窗口P處進行觀測,測得山
坡上A處的俯角為15°,山腳B處的俯角為
60°,已知該山坡的坡度i(即tan∠ABC)為1:
,點P、H、B、C、A在同一個平面上.點
H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于 ▲ 度;
(2)求A、B兩點間的距離(結果精確到0.1米,參考數(shù)據:≈1.732).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+b與坐標軸交于C,D兩點,直線AB與坐標軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).
(1)求點A,C的坐標;
(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經過點E,求k的值;
(3)在(2)的條件下,點M在直線CD上,坐標平面內是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;將△ABC繞點順時針方向旋轉n度后得到△EDC,此時點D在AB邊上,斜邊DE交AC邊于點F,求n的大小和圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,∠BAD=90°,∠BCD=30°,∠BAD的平分線AE與邊DC相交于點E,連接BE、AC,若AC=7,△BCE的周長為16,則線段BC的長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別交軸、軸于點、.點的坐標是,拋物線經過、兩點且交軸于點.點為軸上一點,過點作軸的垂線交直線于點,交拋物線于點,連結,設點的橫坐標為.
(1)求點的坐標.
(2)求拋物線的表達式.
(3)當以、、、為頂點的四邊形是平行四邊形時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)在第一象限上有兩點A,B.
(1)如圖1,AM⊥y軸于M,BN⊥x軸于N,求證:△AMO的面積與△BNO面積相等;
(2)如圖2,若點A(2,m),B(n,2)且△AOB的面積為16,求k值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com