【題目】如圖,已知拋物線yax2x+c的對(duì)稱軸為直線x1,與x軸的一個(gè)交點(diǎn)為A(﹣1,0),頂點(diǎn)為B.點(diǎn)C5,m)在拋物線上,直線BCx軸于點(diǎn)E

1)求拋物線的表達(dá)式及點(diǎn)E的坐標(biāo);

2)聯(lián)結(jié)AB,求∠B的正切值;

3)點(diǎn)G為線段AC上一點(diǎn),過點(diǎn)GCB的垂線交x軸于點(diǎn)M(位于點(diǎn)E右側(cè)),當(dāng)CGMABE相似時(shí),求點(diǎn)M的坐標(biāo).

【答案】(1)E(2,0);(2)3;(3) M點(diǎn)的坐標(biāo)為(5,0)或(70

【解析】

(1)由對(duì)稱軸可求得a的值,再把A點(diǎn)坐標(biāo)代入可求得c的值,則可求得拋物線表達(dá)式,則可求出B、C的坐標(biāo),由待定系數(shù)法可求得直線BC的解析式,可求出E的坐標(biāo)

(2)由A、B、C三點(diǎn)的坐標(biāo)可求得AB、AC和BC的長(zhǎng),可判定△ABC是以BC為斜邊的直角三角形,利用三角形的定義可求出答案

(3)設(shè)M(x,0),當(dāng)∠GCM=∠BAE時(shí),可知△AMC為等腰直角三角形,可求的M點(diǎn)的坐標(biāo);當(dāng)∠CMG=∠BAE時(shí),可證得△MEC∽△MCA,利用相似三角形的性質(zhì)可求得x的值,可求得M點(diǎn)的坐標(biāo)

(1)∵拋物線對(duì)稱軸為x=1,

,解得,

把A點(diǎn)坐標(biāo)代入可得,解得,

∴拋物線表達(dá)式為,

,

∴B(1,﹣2),

把C(5,m)代入拋物線解析式可得,

∴C(5,6),

設(shè)直線BC解析式為y=kx+b,

把B、C坐標(biāo)代入可得,解得,

∴直線BC解析式為y=2x﹣4,

令y=2可得2x﹣4=0,解得x=2,

∴E(2,0);

(2)∵A(﹣1,0),B(1,﹣2),C(5,6),

,

∴AB2+AC2=8+72=80=BC2,

∴△ABC是以BC為斜邊的直角三角形,

;

(3)∵A(﹣1,0),B(1,﹣2),

∴∠CAE=∠BAE=45°,

∵GM⊥BC,

∴∠CGM+∠GCB=∠GCB+∠ABC=90°,

∴∠CGM=∠ABC,

∴當(dāng)△CGM與△ABE相似時(shí)有兩種情況,

設(shè)M(x,0),則C(x,2x﹣4),

①當(dāng)∠GCM=∠BAE=45°時(shí),則∠AMC=90°,

∴MC=AM,即2x﹣4=x+1,解得x=5,

∴M(5,0);

②當(dāng)∠GMC=∠BAE=∠MAC=45°時(shí),

∵∠MEC=∠AEB=∠MCG,

∴△MEC∽△MCA,

,即,

∴MC2=(x﹣2)(x+1),

∵C(5,6),

∴MC2=(x﹣5)2+62=x2﹣10x+61,

∴(x﹣2)(x+1)=x2﹣10x+61,解得x=7,

∴M(7,0);

綜上可知M點(diǎn)的坐標(biāo)為(5,0)或(7,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,的余切值為2,點(diǎn)D是線段上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)AB重合),以點(diǎn)D為頂點(diǎn)的正方形的另兩個(gè)頂點(diǎn)E、F都在射線上,且點(diǎn)F在點(diǎn)E的右側(cè),聯(lián)結(jié),并延長(zhǎng),交射線于點(diǎn)P

1)點(diǎn)D在運(yùn)動(dòng)時(shí),下列的線段和角中,________是始終保持不變的量(填序號(hào));

;②;③;④;⑤;⑥;

2)設(shè)正方形的邊長(zhǎng)為x,線段的長(zhǎng)為y,求yx之間的函數(shù)關(guān)系式,并寫出定義域;

3)如果相似,但面積不相等,求此時(shí)正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,梯形ABCD,DCAB,對(duì)角線AC平分∠BCD,點(diǎn)E在邊CB的延長(zhǎng)線上,EAAC,垂足為點(diǎn)A

1)求證:BEC的中點(diǎn);

2)分別延長(zhǎng)CD、EA相交于點(diǎn)F,若AC2=DCEC,求證:ADAF=ACFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC 中,ABAC,D、E是斜邊BC上兩點(diǎn),且∠DAE45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB.設(shè)BEaDCb,那么AB_____.(用含a、b的式子表示AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線x軸、y軸分別交于A、B兩點(diǎn),設(shè)O為坐標(biāo)原點(diǎn).

1)求∠ABO的正切值;

2)如果點(diǎn)A向左平移12個(gè)單位到點(diǎn)C,直線l過點(diǎn)C且與直線平行,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某足球特色學(xué)校在商場(chǎng)購(gòu)買甲、乙兩種品牌的足球.已知乙種足球比甲種足球每只貴20元,該校分別花費(fèi)2000元、1400元購(gòu)買甲、乙兩種足球,這樣購(gòu)得甲種足球的數(shù)量是購(gòu)得乙種足球數(shù)量的2倍,求甲、乙兩種足球的單價(jià)各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BCAC上,且CDCE,聯(lián)結(jié)DE并延長(zhǎng)至點(diǎn)F,使EFAE,聯(lián)結(jié)AFCF,聯(lián)結(jié)BE并延長(zhǎng)交CF于點(diǎn)G

(1)求證:BCDF;

(2)BD2DC,求證:GF2EG;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完二元一次方程組的應(yīng)用之后,老師寫出了一個(gè)方程組如下:,要求把這個(gè)方程組賦予實(shí)際情境.

小軍說出了一個(gè)情境:學(xué)校有兩個(gè)課外小組,書法組和美術(shù)組,其中書法組的人數(shù)的二倍比美術(shù)組多5人,書法組平均每人完成了4幅書法作品,美術(shù)組平均每人完成了3幅美術(shù)作品,兩個(gè)小組共完成了40幅作品,問書法組和美術(shù)組各有多少人?

小明通過驗(yàn)證后發(fā)現(xiàn)小軍賦予的情境有問題,請(qǐng)找出問題在哪?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BDE,交BCF,BHAFH,交ACG,交CDP,連接GEGF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BECG;④1;⑤SPBCSAFC12,其中正確的有( 。﹤(gè).

A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案