【題目】作圖題

(1)如圖:已知∠AOB和線段CD,求作一點P,使PC=PD,并且點P到∠AOB的兩邊距離相等(尺規(guī)作圖,不寫作法,保留作圖痕跡,寫出結論);

(2)如圖:在長度為1個單位長度的小正方形組成的正方形網格中,點A、B、C在小正方形的頂點上.

①在圖中畫出與關于直線成軸對稱的△A′B′C′;

②線段CC′被直線_________;

③△ABC的面積為_________;

④在直線上找一點P,使PB+PC的長最短.

【答案】(1)見解析;(2)①見解析;②垂直平分;③.

【解析】

(1)如圖(1):根據(jù)分析得OP為∠AOB的角平分線,PE是線段CD的垂直平分線。

(2)

①如圖所示:

②∵△ABC與△AB′C′關于直線l成軸對稱,

∴線段CC′被直線l垂直平分;

故答案為:垂直平分;

③連接B′C,交直線l與點P,此時PB+PC的長最短,

可得BP=B′P,

則B′C=BP+CP=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點P為EAF平分線上一點,PBAE于B,PCAF于C,點M,N分別是射線AE,AF上的點,且PM=PN.

(1)如圖1,當點M在線段AB上,點N在線段AC的延長線上時,求證:BM=CN;

(2)在(1)的條件下,直接寫出線段AM,AN與AC之間的數(shù)量關系 ;

(3)如圖2,當點M在線段AB的延長線上,點N在線段AC上時,若AC:PC=2:1,且PC=4,求四邊形ANPM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為a的等邊三角形,將三角板的30°角的頂點與A重合,三角板30°角的兩邊與BC交于D、E兩點,則DE長度的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AC=BC,∠ACB=90°,將△ABC繞點A旋轉60°到△ADE的位置,點C的對應點為E,連接CD,若AC=BC=1,則CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在RtABC中,∠C=90°,∠A=30°,BC=18cm.動點P從點A出發(fā),沿AB向點B運動,動點Q從點B出發(fā),沿BC向點C運動,如果動點P2cm/sQ1cm/s的速度同時出發(fā),設運動時間為ts),解答下列問題:

1t為何值時,△PBQ是等邊三角形?

2P,Q在運動過程中,△PBQ的形狀不斷發(fā)生變化,當t為何值時,△PBQ是直角三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩種商品原來的單價和為100元因市場變化,甲商品降價10%,乙商品提價40%調價后兩種商品的單價和比原來的單價和提高了20%甲、乙兩種商品原來的單價各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與解不等式式
(1)計算(π﹣ 0+( 1
(2)解不等式組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABCBA=BC,點DAB延長線上一點,DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C、D在同一條直線上,點E、F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.

(1)求證:△ACE≌△DBF;

(2)求證:四邊形BFCE是平行四邊形.

查看答案和解析>>

同步練習冊答案